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Abstract—In this paper, we analyze a chaotic dynamics
generating a chaotic sequence with biased values and ap-
ply it to noncoherent chaos communications. We examine
a behavior of the chaotic dynamics by increasing the slope
of the chaotic map and investigate the invariant measure
and the correlation function. A high quality performance
of noncoherent chaos communications is obtained by con-
trolling the distribution of the chaotic sequence with biased
values. Finally we carry out the computer simulation using
its sequence and discuss the obtained results and the future
problem for chaos communication.

1. Introduction

Recently, a digital communication system using chaos
becomes a hot topic [1]- [7]. Especially, it is attracted to de-
velop noncoherent detection systems which does not need
to recover a basis signals (unmodulated carries) at the re-
ceiver. The differential chaos shift keying (DCSK) [1] and
the optimal receiver [2] are well known as a typical non-
coherent system. In addition, the correlation delay shift
keying (CDSK) [3] similar to the DCSK scheme is also re-
garded.

Analyzing chaotic sequence as well as its behavior is es-
sential for improving the the performance of chaos com-
munications. A Chaotic sequence is a series of non-
periodic signals generated from nonlinear dynamical sys-
tems. These signals are sensitive to initial conditions and
difficult to predict the behavior of the future from the past
observational signals. Also a chaotic sequence can be gen-
erated from a simple model, such as a one-dimensional
chaotic map. In our previous research, we investigated a
transmitter changing a chaotic sequence depending on an
initial value [6]. Moreover we investigated the the perfor-
mance of chaos communications using the sequence with
biased values purposely [8]. As results, it could be ob-
served that its performance was better than that of the con-
ventional transmitter. From these results, we concluded
that the chaotic dynamics affect the performance of chaos
communications greatly. However, many subjects, such as
the behavior of the system and the change of the correlation
property, were still not solved. Then we consider that it is
important to analyze a behavior of a chaotic sequence for
improving the performance of chaos communications.

As analysis methods to characterize chaos, there are
many measures of chaos. In this paper, we shall concen-
trate the invariant measure and the correlation function as
measures of chaos. The invariant measure can observe

the distribution of the value having the chaotic sequence.
The correlation function can examine the irregularity of the
chaotic sequence. By calculating the invariant measure and
the correlation function, we can detail a chaotic sequence.

In this study, we analyze the chaotic map for the chaotic
sequence with biased values using the invariant measure
and the correlation function. Moreover, we control the
number of biased values of the chaotic sequence by increas-
ing the slope of the chaotic map and observe the behavior
of its sequence. Finally we carry out the computer simula-
tion using its sequence and discuss the obtained results and
the future problem for chaos communication.

2. Chaotic Map With Different Slopes and its Analysis

In this section, we introduce a chaotic map with differ-
ent slopes and its analysis method. Figure 1 shows the
chaotic map with 4 slopes, where this map is made from the
Bernoulli shift map well known as a typical 1-dimensional
map. Moreover it is based on the reference [7] to make this
map. Equation of this map is described by
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(r1 + 1)xk − q1 + r1

q1 + 1
(−1 ≤ xk ≤ q1)

(r1 − 1)xk/q1 + 1 (q1 < xk ≤ 0)

(r2 − 1)xk/q2 − 1 (0 < xk ≤ q2)

(1 − r2)xk − q2 + r2

1 − q2
(q2 < xk ≤ 1)

, (1)

where q1, r1, q2 and r2 are the parameters deciding the
slopes { (−1.0 < q1 < 0.0), (−1.0 < r1 < 1.0), (0.0 < q2 <
1.0), (−1.0 < r2 < 1.0) } . We can change the slopes of the
map to change these parameters. In this paper, we consider
2 methods for giving the parameter. One is the parallel shift
method (q2 = 1 + q1, r2 = r1), i.e. it is made the parallel
shift from the left side slope to the right side slope with
center on xn = 0. Another is the point symmetry method
(q2 = (−1) × q1, r2 = (−1) × r2), i.e. the left side and the
right side slopes are made to be the point symmetry with
center on (xn, xn+1) = (0, 0). Figures 2(a) and (b) show
the chaotic maps with the two methods. As one can see,
we can obtain the various maps to change the parameters.
By using these maps, we analyze the chaotic dynamics of
this one-dimensional chaotic map family. To observe the
behavior of the chaotic dynamics using these methods, we
investigate the invariant measure and correlation function.
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Figure 1: Chaotic map with 4 slopes.

2.1. Invariant measure

The invariant measure is the function deciding the iter-
ation density of a map, namely we can observe the distri-
bution of the value of the chaotic sequence. The invariant
measure ρ(x) is described by

ρ(x) ≡ lim
N→∞

1
N

N
∑

i=0

δ(x − f i(x0)) , (2)

where xn+1 = f (xn), n = 0, 1, 2, · · · , x0 is an initial
value, δ is the delta function. If ρ(x) is the system that is
not dependent on an initial value, it is called ergodic.

2.2. Correlation function

The correlation function is the measure to calculate
the correlation between random variables at two different
points in space or time. Thus we can observe the irregular-
ity of chaotic sequence to calculate the correlation function.
The correlation function C(m) is described by

C(m) = lim
N→∞

1
N

N−1
∑

i=0

x̂i x̂i+m , (3)

where x̂i = f i(x0) − x̄, x̄ = limN→∞
1
N
∑N−1

i=0 f i(x0), m is
a difference with a datum point. If the correlation is cal-
culated between random variables at two different points
in same sequence, it is called the autocorrelation func-
tion. Also if the correlation is calculated between random
variables at two different points in different sequence, it
is called the cross-correlation function. In this paper, we
carry out the autocorrelation analysis since we are not con-
cerned here with a multiplexing system.

2.3. Analysis results

Figures 3 and 4 show the numerical analysis results of
the invariant measure and the correlation function. To cal-
culate using the computer, N of each result is assumed to
106.

In the case of the parallel shift of ρ(x) (Fig. 3(a)), we
can observe that ρ(x) shifts from −1 to 1 according to the
parameters (r1). Namely, it can be said that the chaotic se-
quence with the biased value is distributed to the left or the
right with center on x = 0 according to the parameters (r1).
However, these C(m) (Fig. 4(a)) did not almost change.
Moreover, we can also find that the correlation property
decreases as compared with the Bernoulli shift map.

In the case of the point symmetry of ρ(x) (Fig. 3(b)),
its distribution is divided into right and left with center on
x = 0 according to the parameters (q1, r1). In addition, we
can observe that C(m) (Fig. 4(b)) increase according to the
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(a) Parallel shift (q2, r2) = (q1 + 1, r1)
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Figure 2: Chaotic map with each parameter.
(1) Bernoulli shift map, (2) (q1, r1) = (−0.6,−0.55),
(3) (q1, r1) = (−0.6, 0.35), (4) (q1, r1) = (−0.1, 0.05),
(5) (q1, r1) = (−0.6, 0.35), (6) (q1, r1) = (−0.85, 0.85)

parameters (q1, r1). However, since C(m) decreases chang-
ing alternately according to m, like a (q1, r1) = (−0.6, 0.35)
and (q1, r1) = (−0.85, 0.85), we expect that the chaotic se-
quence having the similar value alternately was generated.

From these results, we can confirm that ρ(x) and C(m)
of the chaotic sequence are different each by changing the
parameter. Concurrently, we can also find that it is possible
to choose any ρ(x) and C(m) by changing the parameters.
However, when the chaotic map has four slopes, the devia-
tion of the chaotic sequence is limited to one or two.

In this paper, we perform generating the chaotic se-
quence with any ρ(x) using the chaotic map with many
slopes. Furthermore, we also perform to generate the
chaotic sequence which was excellent in the correlation
property by increasing slopes.

3. Chaotic Map with Many Different Slopes
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Figure 5: Chaotic map with 10 slopes.

In this section, we introduce a chaotic map with many
different slopes. In Sec. 2, we have observed to be differ-
ent ρ(x) and C(m) of the chaotic sequence depending on
the slope of the chaotic map. However, when the chaotic
map has four slopes, the deviation of the chaotic sequence
is limited to one or two. Thus, we perform generating
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Figure 3: Invariant measure with each
parameter.
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Figure 4: Correlation function with each
parameter.
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Figure 7: Analysis results of Chaotic
map with 10 slopes.

the chaotic sequence with any distribution increasing the
slopes of the chaotic map. In this paper, we generate the
chaotic sequence with the biased values having 3 distribu-
tion including many values of a near (−1, 0, 1) based on
results in Sec. 2.3. Figure 5 shows the chaotic map with 10
slopes to generate the chaotic sequence with 3 distribution.
This map can change the frequency of 3 distribution, i.e.
ρ(x) of 3 distribution by changing the altitude of the slope.
To investigate the distribution by different occurrence rate,
3 types of parameters are used. These parameters are de-
scribed below. Also, Figures 6(a), (b) and (c) show the
chaotic map with each parameter.
• Type 1

(q1, r1) = (−0.75, − 0.6), (q2, r2) = (−0.55, − 0.05),
(q3, r3) = (−0.3, 0.05), (q4, r4) = (−0.2, 0.7),
(q5, r5) = (0.25, − 0.6), (q6, r6) = (0.45, − 0.05),
(q7, r7) = (0.7, 0.05), (q8, r8) = (0.8, 0.7)

• Type 2
(q1, r1) = (−0.8, − 0.6), (q2, r2) = (−0.6, − 0.05),
(q3, r3) = (−0.4, 0.05), (q4, r4) = (−0.2, 0.6),
(q5, r5) = (0.2, − 0.6), (q6, r6) = (0.4, − 0.05),
(q7, r7) = (0.6, 0.05), (q8, r8) = (0.8, 0.6)

• Type 3
(q1, r1) = (−0.8, − 0.6), (q2, r2) = (−0.6, − 0.1),
(q3, r3) = (−0.4, 0.1), (q4, r4) = (−0.2, 0.6),
(q5, r5) = (0.2, − 0.6), (q6, r6) = (0.4, − 0.1),
(q7, r7) = (0.6, 0.1), (q8, r8) = (0.8, 0.6)

Figure 7 (a) and (b) show the analysis results of the
chaotic map with each type parameter. In Fig. 7(a), we can
observe that 3 distribution including many values of a near
(−1, 0, 1). Moreover, we can also confirm the different oc-
currence rate of (−1, 0, 1) according to the parameters. In
Fig. 7(b), it can be observed that C(m) increase according
to the parameters as compare with Fig. 4. In addition, it can
be said that the chaotic sequence is generated without hav-
ing the similar value alternately unlike Fig. 4(b). Therefore,
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Figure 6: Chaotic map with 10 slopes (each parameter).

by giving the many slopes for the chaotic map, we can con-
trol precisely the distribution of the chaotic sequence and
obtain the high correlation properties.

4. Noncoherent Chaos Communication

In this section, we carry out the numerical simulation
of a noncoherent chaos communication using the chaotic
map with 10 slopes. In this paper, we perform the DCSK
simulation as a noncoherent chaos communication. As a
reason, it is because that DCSK is one of the noncoherent
correlation-based communication systems, and its system
is very simple. First we introduce DCSK operation. Next
we explain the numerical simulation and discuss the ob-
tained results.

Figure 8 shows the block diagram of a DCSK transmitter
(a) and receiver (b). In this scheme, the transmitter out-

Σ
i=1

N
RiRi+N Decoder

(a)

(b) Ri

Ri+N Threshold

Delay N

Chaotic signal 
generator

Delay N

Information symbols 

                   bl

blxi-N

xi

Si

N

Figure 8: DCSK operation. (a) transmitter. (b) receiver.

puts a chaotic sequence xi followed by the same sequence
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multiplied by the information symbol bl(±1). To transmit
1-bit information, N chaotic signals are generated, where N
is the chaotic sequence length. Therefore, the transmitted
signal is given by

S i =

{

xi (1 ≤ i ≤ N)
blxi−N (N + 1 ≤ i ≤ 2N) (4)

Also, the transmitted signal can be written as S =

(S 1 S 2 · · · S 2N) by vector. Since the noise n =

(n1 n2 · · · n2N) is added to the transmitted signal by
the channel, the received signal can be written as R =

(R1 R2 · · · R2N) = S + n.
On the receiving side, it is evaluated by the correlation

of 2 signals, which are obtained by dividing the received
signals into two halves (length N). Thus, the output of the
correlation can be written as

C1 =

N
∑

i=1

RiRi+N . (5)

The decoded symbol is decided as “+1” or “−1” depending
on C1 being larger or smaller than 0.

To generate the transmitted signal, the DCSK transmitter
needs to switch correctly by the chaotic sequence length
N. Therefore, the sophisticated switch is required, and it is
regarded as the important issue to design DCSK.

5. Simulation results and Discussions

The simulation conditions are as follows. In the trans-
mitting side, the chaotic sequence length N are 16 and 32.
Also, as the parameters deciding the slopes of the chaotic
sequence, we use 3 type parameters in Sec. 3, i.e. Type
1, Type 2 and Type3. In the channel, noise is assumed
to be AWGN. Based on these conditions, the system per-
formance is evaluated by plotting the BER against Eb/N0
when 104 bits of information are transmitted.

Figure 9 plots the BERs versus Eb/N0 for each type pa-
rameter. To compare the performance of the chaotic se-
quence with biased values, Fig. 9 shows the performance
of the conventional DCSK using the Bernoulli shift map.
From these results, we can observe that the both BERs
(N = 16, 32) improve as compare with the conventional
DCSK according to the parameters. Especially, Type 1’s
performance is the best in Fig. 9. This reason for improv-
ing its performance is considered that we can control the
distribution of the chaotic sequence with biased values so
that the correlation property improved. In Figs. 4(a) and 7,
we have showed the correlation function of the Bernoulli
shift map and the chaotic map with 10 slopes, respec-
tively. We recognize from these figures that C(0) of the
chaotic sequence with biased values is higher than that of
the Bernoulli shift map. The higher C(0) represents that
the autocorrelation property of the proposed chaotic map
is high, namely, the chaotic sequence with biased values
become strong to interference of the noise even if it does
not give the distribution in the extreme. From these results,
it would be expected to be strong to a multipass fading.
In addition, it might be able to obtain a stable BER which
does not depend on an initial value by giving the biased
values for the chaotic sequence. Therefore, it can be said
that the chaotic sequence which changed the distribution of
biased values is very effective in the chaos communication
systems.
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Figure 9: Simulation results.

6. Conclusions
In this study, we have analyzed the chaotic map for the

chaotic sequence with biased value deeply and carried out
the computer simulation using its sequence. As results, we
have obtained the higher autocorrelation property and the
better BER performance by controlling the distribution of
the chaotic sequence with biased values, namely, the per-
formance of the chaos communication is improved by the
chaotic sequence with biased values depending on its dis-
tribution. Consequently, it would be expected that the per-
formance of chaos communication is improved further by
controlling the number or frequency of its distribution for
any purpose of communication.
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