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Abstract—This paper presents a deterministic cel-
lular array model of reaction-diffusion systems for par-
allel generation of pseudorandom binary i.i.d. se-
quences. As diffusion systems contain the Brownian
particles, the cellular array contains virtual molecules
which move like simple random walkers with their
composition changed. Then, the direction which the
virtual molecules move in will be i.i.d. Numerical
experiments show that the pseudorandom i.i.d. se-
quences generated from the cellular array possess al-
most the same statistical properties as truly random
binary i.i.d. sequences.

1. Introduction

Binary pseudorandom sequences which play impor-
tant roles in communication and information process-
ing fields are generated in various ways. Algebraic
methods which employ linear feedback shift registers
[1] are most widely applied in the fields. Chaotic
methods using discretized piecewise linear maps [2]
can generate not only independently and identically
distributed (i.i.d.) sequences but also Markovian se-
quences. A method using cellular array models of
probabilistic physical systems [3] is also proposed to
generate Markovian sequences. In this paper, we will
build a deterministic cellular array model of reaction-
diffusion systems for parallel generation of pseudoran-
dom binary i.i.d. sequences. As diffusion systems
contain the Brownian particles, the cellular array con-
tains virtual molecules which behave like simple ran-
dom walkers. Then, the direction which the particles
move in will be i.i.d. In Sections 2, we will introduce
the cellular array. In Section 3, we will investigate the
statistics of the sequences generated from the array.

2. Cellular Array

2.1. Diffusion Cellular Array

We first present a cellular array model of diffusion
systems without reaction between their ingredients [4].
Figure 1 shows a one-dimensional cellular array model.
We assume in the array pseudo-Brownian particles
each of which carries a truth variable taking “1” or
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Figure 1: A diffusion cellular array.

“0” and moves from a cell to one of its adjacent cells
for one time step. The cells in the array are switches
which take parallel or cross connection between two
inputs al, ar and two outputs ul, ur. Suppose that a
particle which goes out from ur of Celli−1 enters to al

of Celli. When the internal connection of Celli is par-
allel, the particle changes its direction and goes back
to Celli−1. When the connection is cross, the particle
keeps its direction and moves to Celli+1. The inter-
nal connection of each cell is determined by a logic
function F ,

Parallel/Cross = F (al, ar, q) (1)

where al and ar are the truth variables of two particles
which enter the cell and q∈{1, 0} is an internal state
of the cell. A logic function Fq determines the state at
each time step,

q ← Fq(al, ar, q) (2)

If the probabilities that the internal connection is par-
allel and cross are even, that is

Prob(F = 1) = Prob(F = 0) = 0.5 (3)

a particle in a cell moves to its left and right adja-
cent cells at even probabilities. Then, we regard all
the pseudo-Brownian particles in the array as simple
random walkers.

The sequence of the direction of a simple random
walker is ideally a binary i.i.d. sequence. We once
expected that pseudorandom i.i.d. sequences of fine
quality would be obtained by the cellular array model
of diffusion systems. However, unfortunately, we saw
a small difference between the statistical properties of
the sequences obtained by the diffusion cellular array
and truly random binary i.i.d. sequences.
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Figure 2: A reaction-diffusion cellular array.

2.2. Reaction-Diffusion Cellular Array

We introduce reaction cells and construct a cellular
array model of reaction-diffusion systems. The reac-
tion cells change the truth variables which the particles
in the cellular array model of diffusion systems pos-
sess. Then, we expect to see very randomized motion
of the particles in the cellular array model of reaction-
diffusion systems.

We construct a three-layer cellular array as shown
in Fig. 2. The cellular array executes simplified micro-
scopic simulation of diffusion and the following chem-
ical reaction.

A ⇀↽ B + C (4)

The upper and the lower layers are the diffusion ar-
rays introduced in the previous subsection. The inputs
and the outputs of the cells in the upper array are de-
noted by bl, br, vl, and vr. Cells for reaction (4) form
the middle layer. The pseudo-Brownian particles pos-
sessing truth values “1”s and “0”s in the lower diffu-
sion array represent molecules A and C. The pseudo-
Brownian particles possessing truth values “1”s in the
upper diffusion array represent molecules B. We as-
sume in the upper diffusion array that there exists no
molecule (which we call molecule φ) at the locations
which particles possessing truth values “0”s occupy.
The internal connections of the lower and the upper
diffusion cells are always different. Then, the connec-
tions in the upper cells are determined by

Parallel/Cross = F (al, ar, q) (5)

Reaction cells simulate the chemical reaction given
by Eq. (4). Each reaction cell has two inputs u,v, two
outputs a,b and one internal state e. They all take
truth values “1”s and “0”s. The cell operation rule is
described by three logic functions Ga, Gb, and Ge,

a ← Ga(u, v, e) (6)
b ← Gb(u, v, e) (7)
e ← Ge(u, v, e) (8)

The inputs and the outputs are connected to the out-
puts and the inputs of diffusion cells, as shown in Fig.
2. Input u takes the value that a particle at the out-
put of the lower diffusion cell has, that is, u=1 if the
particle is molecule A, u=0 if the particle is molecule
C. Input v takes the value that a particle at the out-
put of the upper diffusion cell has, that is, v=1 if the
particle is molecule B, v=0 if the particle is molecule
φ. If output a=Ga=1, a molecule at the output of the
lower diffusion cell is changed to (or kept as) A. If a=0,
the molecule is changed to (or kept as) C. Then, the
molecule returns to the lower diffusion array. If output
b=Gb=1, a molecule at the output of the upper diffu-
sion cell is changed to (or kept as) molecule B. If b=0,
the molecule is changed to (or kept as) molecule φ.
Then, it returns to the upper diffusion array. The in-
ternal state e represents whether or not the molecules
entered in the reaction cell have kinetic energy greater
than activation energy. If e=1, reaction (4) occurs in
the cell. Two reaction cells receive molecules from the
same upper and lower diffusion cells. Let the internal
states of the left and right reaction cells of the pair be
el and er. Before the reaction cells operate according
to Eqs. (6), (7) and (8), el and er may be exchanged.
The exchange also depends on the logic function F
which determines internal connections of the diffusion
cells. The exchange rule is expressed by:

el ← Fel + Fer (9)
er ← Fel + Fer (10)

The reaction-diffusion system modeled by the three-
layer cellular array is a materially closed system be-
cause the reaction cells conserve the total number of
molecules A and B, and the total number of molecules
A and C. Let the expectation of the number of
molecules A in Celli at time n be denoted by wi(n).
From the operations of the diffusion and the reaction
cells, we can derive the following equation:

wi(n + 2)− wi(n)
2

= D{(wi+1(n)− wi(n))− (wi(n)− wi−1(n))}
+ kwi(n) (11)

where D=1/32 and k=−3/8. Equation (11) corre-
sponds to a difference equation obtained by the dis-
cretization of the following linear partial differential
equation:

∂w

∂t
= D

∂2w

∂x2
− kw (12)

The first and the second terms of the right hand side
represent diffusion and reaction respectively. Diffusion
coefficient D depends on the logic functions F and Fq.
If Prob(F = 1)�=1/2, coefficient D is smaller than 1/32
and an advection term is added to Eq. (12). Reaction
speed k depends on the logic functions Ga, Gb, and
Ge.
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Figure 3: Probability distributions.

3. Numerical Experiments

In this section, we investigate the statistical proper-
ties of the sequences generated by a reaction-diffusion
cellular array model. The specifications on the
reaction-diffusion cellular array model are as follows:
Both the upper and lower diffusion cellular arrays have
(N=)19 diffusion cells and (2N=) 38 molecules. Then
the number of the cells required to form the reaction
layer is 38. Boundary conditions for the two diffusion
cellular arrays are periodic, that is, the two arrays are
circular. Logic functions which determine the opera-
tion of the diffusion cells are given by

F (al, ar, q) = al ⊕ ar ⊕ q (13)
Fq(al, ar, q) = al ⊕ q (14)

Logic functions which determine the operation of the
reaction cells are given by

Ga(u, v, e) = ue + ve (15)
Gb(u, v, e) = ue + ve (16)
Ge(u, v, e) = u⊕ v ⊕ e (17)

Pseudorandom i.i.d. sequences to be examined are
the sequences of the directions d(n) which molecules in

the lower diffusion cellular array move in. If the inter-
nal connection of Celli is parallel at time n, a molecule
which enters to Celli from input al goes out from out-
put ul and moves to Celli−1. Then, d(n)=−1. If the
connection is cross, the molecule moves to Celli+1.
Then, d(n)=+1. From time n=n0 +1, n0=107, we ac-
quire sequences of length 2×106, {d(n0 +1), · · ·d(n0 +
2× 106)} by tracking the motion of molecules moving
in the array which is given an initial condition at time
n=0. (From time n=0 to n0 we discard the sequences.)
We can obtain (2N=)38 sequences in parallel for one
initial condition. We acquire 100×2N sequences for
(M=)100 different initial conditions. We divide each
sequence into (L=)100 subsequences of length 2×104.
Then, we obtain totally (L ×M × 2N=)380,000 sub-
sequences. We use them for samples to investigate the
statistical properties.

We also acquire sequences from cellular automata
whose behavior is governed by the following iteration
called Rule30 [5]:

ci(n + 1)← ci−1(n)⊕ ci(n)⊕ ci+1(n)⊕ ci(n)ci+1(n)
(18)

where ci(n) denotes the state of a cell at location
i, i=0, 1, · · ·, 37, at time n. We compare the se-
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Table 1: Probabilities that xM , χ2, xRj, xL are out of the pass ranges.

Test Pass range Truly random
 binary i.i.d.

Cellular automata
(Rule30)

Reaction-diffusion
cellular array

Monobit test

Poker test

Runs test

Length 2

Length 3

Length 4

Length 5

Length > 5

9725 < xM < 10275

2.16 < χ2 < 46.17

2314 < xR1 < 2686Length 1

1113 < xR2 < 1387

526 < xR3 < 724

239 < xR4 < 385

102 < xR5 < 210

102 < xR>5 < 210

The longest run test xL < 26

10-4

10-4

1.88x10-5
7.36x10-5

1.87x10-5

1.68x10-5

1.30x10-5

9.02x10-6

1.06x10-4

9.21x10-5

2.98x10-4

1.58x10-5
6.32x10-5

1.58x10-5

1.84x10-5

1.58x10-5

2.63x10-6

2.95x10-4

1.97x10-4

3.82x10-4

2.08x10-4
5.00x10-5

8.16x10-5

3.90x10-4

1.05x10-5

1.42x10-4

2.92x10-4

quences generated from the reaction-diffusion cellular
array model with the sequences generated from the
cellular automata which operate according to Rule30.

Monobit Test

Figure 3(a) shows a probability distribution of the
number xM of “+1”s contained in a subsequence.

Poker Test

We obtain from a subsequence 5,000 four-bit words
dm=( d(nl + 4m + 1), d(nl + 4m + 2), d(nl + 4m + 3),
d(nl + 4m + 4) ), m=0, · · ·, 4999, nl=n0+2×104×l,
l=0, · · ·, 99. There exist 16 kinds of word, wk, k=0,
· · ·, 15, in a set of 5,000 word elements. Let the number
of words such that dm=wk in the set be denoted by
fk. Figure 3(b) shows the probability distribution of
χ2 given by the following expression in terms of fk:

16
5000

15∑

k=0

f2
k − 5000 (19)

Runs Test

Figures 3(d) to (i) show probability distributions of
the numbers xRj of “+1” runs of lenght (j=)1, 2, · · ·,
5 and longer than 5 contained in a subsequence.

The Longest Run Test

Figure 3(c) shows a probability distribution of the
length xL of the longest “+1” run contained in a sub-
sequence.

Table 1 shows probabilities that xM , χ2, xRj , xL

are out of the ranges which were the PASS RANGE
designated in FIPS 140-2 randomness tests. We see
from Figs. 3 and Tab. 1 that the pseudorandom
sequences generated from the reaction-diffusion cel-
lular array have almost the same statistical proper-
ties as truly random binary i.i.d. sequences. We see

from Tab. 1 that the sequence the cellular automata
with Rule30 generate contains more runs whose length
are longer than 5 than truly random binary i.i.d. se-
quences.

4. Conclusions

We have found that the pseudorandom i.i.d. se-
quences generated from the deterministic reaction-
diffusion cellular array model have almost the same
statistical properties as truly random i.i.d. sequences.

A diffusion cell permutes two molecules at each time
step. Discretized chaotic maps [2] are also considered
to permute small intervals of variable space. It is inter-
esting that both discrete systems generate pseudoran-
dom sequences by permutation. Permutation seems to
be an origin of randomness.
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