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Abstract—We have already proposed a solving method
with two simple local searches driven by chaotic neurons
for vehicle routing problem (VRP). The chaotic neuron
qualitatively realizes refractoriness that makes it possible
to memorize past searching history with an exponential de-
cay. Therefore, the proposed method can escape from lo-
cal minima effectively. We confirmed that the proposed
method shows good performance for the VRP with time
windows. However, in order to obtain good performance,
it is inevitable to adjust an optimal parameter set. In this pa-
per, we propose a new parameter adjusting approach for the
proposed chaotic searching method. Using this approach,
the performance of the proposed method is much improved
without fine adjustment of parameters of the chaotic neu-
rons.

1. Introduction

Creating an efficient delivery plan is a necessary issue
in transportation systems, such as home-delivery service,
transport of merchandise, school bus routing, and so on.
To resolve the issue, the vehicle routing problem (VRP) is
widely studied[1, 2], because the VRP shares fundamental
property for various transportation systems. VRP is one
of the NP-hard combinatorial optimization problems[3].
Then, it is very difficult to obtain an optimum solution in
a realistic time. Thus, to develop an approximate method
is a very important problem to obtain a good solution in
reasonable time.

As for solving the combinatorial optimization problems
such as traveling salesman problems (TSPs) or quadratic
assignment problems (QAPs), a heuristic search with
chaotic neurodynamics (chaotic search) is very effective[4,
5, 6, 7]. From this point of view, we have already proposed
a chaotic search for VRP[1]. In the search[1], the CROSS-
exchange[8] are introduced as a local search. The CROSS-
exchange operates to exchange and insert customers. Al-
though the proposed method[1] shows better performance
than the tabu search[9], it take a relatively long time to
obtain solutions because of complexity of the CROSS-
exchange.

For the above reasons, we have already proposed a new
simpler method with chaotic neurodynamics[10, 11]. In the
proposed method, two simple local searches for exchange

and insertion are driven by chaotic neurons. Using the sim-
ple local searches, the complexity is much reduced. In ad-
dition, the new proposed method can obtain a good solu-
tion faster than the method with the CROSS-exchange[1].
Although the performance is much improved, there still
remains in these method[1, 10, 11]. The chaotic search
[1, 4, 5, 6, 7, 10, 11] has many parameters, and it is nec-
essary to find proper parameters for obtaining good results.
Then, in this paper, we propose a new parameter adjust-
ing approach to improve the proposed method[1, 10, 11].
Using the parameter adjusting approach, the performance
of the proposed method becomes good without fine adjust-
ment of the parameters.

2. Vehicle routing problem

VRP consists of a depot, vehicles and customers. The
depot is an arrival and departure point of the vehicles. Each
vehicle has a weight limit, and visits the customers to sat-
isfy their demands. The customers are visited only once by
one vehicle. In this paper, we treat VRP with time win-
dows (VRPTW). In VRPTW, each customer has its own
time window, and the vehicles have to visit the customers
within the time window.

The object of VRP is to minimize the number of the ve-
hicles, the total travel distance, and the total travel time.
Generally, a primary object of VRP is to minimize of the
number of the vehicles. Hence, we use the following ob-
jective function:

g(S ) =
m∑

l=1

Dl + γ × m, (1)

where S is a solution (all the tours of the vehicles), m is
the number of vehicles, Dl is a total travel distance of the
l-th vehicle, and γ is a scaling parameter. Because the first
priority for VRP is to reduce the number of the vehicles in
this paper, we set γ large.

3. Chaotic search with simple two local searches

We have already proposed a basic chaotic search for
VRPTWs[1]. In the method[1], we used the CROSS-
exchange[8] which operates to exchange and insert cus-
tomers. Although the method is effective for VRPTWs,
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(a) If a neuron in the first row ( j = 1) fires, a customer is exchanged.
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(b) If a neuron in the second row ( j = 2) fires, a customer is inserted.

Figure 1: In this example, (a) the (l, 1)-th neuron fires, then the
customer l is exchanged by the customer m whose gain is the max-
imum (Eq.(1)). (b) If the (l, 2)-th neuron fires, then the customer l
is inserted into the position next to the customer m whose gain is
the maximum (Eq.(1)).

it takes a long time to get a solution because of com-
plexity of the CROSS-exchange. To reduce the complex-
ity, we have proposed a new chaotic search [10, 11]. In
the proposed method[10, 11], we use two simple local
searches. The first one is to exchange the customer for an-
other one, and the second one is to insert the customer into
another place. Separating the fundamental functions of the
CROSS-exchange, we could reduce the complexity of the
CROSS-exchange.

In the proposed method[10, 11], chaotic neurons drive
the two local searches: That is, if a neuron fires, a local
search corresponding the firing neuron is performed. To
realize this method, we use 2n chaotic neurons for an n-
customer problem. Each neuron corresponds to each cus-
tomer. Figure 1 shows how to code the firing of neurons
for the local searches.

In the proposed method[10, 11], each neuron has a gain
effect, a refractory effect and a mutual connection effect.
These effects of the (i, j)-th neuron are defined as follows:

ξi j(t + 1) = βmax
m
{∆i jm}, (2)

ζi j(t + 1) = −α

t∑

d=0

kd
r xi j(t − d) + θ, (3)

ηi j(t + 1) = −W
n∑

p=1

2∑

q=1

xpq(t) +W, (4)

where ξi j(t), ζi j(t) and ηi j(t) represent the gain effect, the

refractory effect, and the mutual connection effect, respec-
tively. Then, an output of the (i, j)-th neuron is defined as
follows:

xi j(t + 1) = f {ξi j(t + 1) + ζi j(t + 1) + ηi j(t + 1)}, (5)

where f (y) = 1/(1 + e−y/ε) called sigmoid function and ε
is a small positive parameter. If xi j(t) > 1/2, the (i, j)-th
neuron fires at the time t and the local search to which the
neuron corresponds is performed.

In Eq.(2), β is a positive scaling parameter of the gain
effect, and ∆i jm is a gain value of the objective func-
tion (Eq.(1)) if the local searches are performed. ∆i jm =

g(S B) − g(S A), where S B and S A are solutions before and
after the local searches are performed respectively. Here, m
indicates a customer to be exchanged or inserted into their
next order, and m is so selected that ∆i jm takes the maxi-
mum gain. By the gain effect, the neuron corresponding a
good operation become easy to fire.

In Eq.(3), α is a positive scaling parameter, kr(0 < kr <

1) is a decay factor, and θ is a threshold value. Then, the
refractory effect inhibits the firing of a neuron which has
just been fired, which realizes an memory effect with a ex-
ponential decay. The strength of the refractory effect grad-
ually decays depending on the value of kr.

In Eq.(4), W is a positive scaling parameter. The mutual
connection adjusts a firing ratio of all neurons. If many
neurons fire, Eq.(4) becomes a small value, and in a reverse
case, it becomes a large value.

In the proposed method[10, 11], the updating order of
the neurons is deterministically defined so that the corre-
sponding customer is clockwise for the depot. A single it-
eration of the proposed method is finished if all the neurons
are updated, and the update is asynchronously conducted.
Therefore, the multiple local searches are performed in a
single iteration.

Moreover, to reduce the number of vehicles, the ejection
chain[12] is executed at every iteration. If the number of
routes can be reduced, the ejection chain is performed.

4. Computational results

To evaluate the performance of the proposed method, we
solved 100-customer instances from Solomon’s benchmark
problems[13]. In these instances, there are six different
types called R1, R2, C1, C2, RC1 and RC2. Here, R means
a random allocation, C a clustered allocation, and RC their
mixture. The time windows are narrow in the type 1 and
wide in the type 2. A total number of the instances is 56.
We compared the method with CROSS-exchange[1] and
the method with two simple local searches (2TYPE) to the
same initial solution produced by the Bräysy construction
heuristic method[12].

In Eq.(1), we set γ to 1, 000, because reduction of the
number of vehicles has the first priority. The parameters of
the chaotic neurons in both methods are set as follows: β =
0.04, α = 0.5, kr = 0.8, θ = 0.4,W = 0.002, and ε = 0.02.

- 125 -



Table 1: Comparison of the two methods (2TYPE and CROSS).
method R1 R2 C1 C2 RC1 RC2 Time

2TYPE[10, 11] 12.33 3.09 10.00 3.00 12.00 3.38 52min
1223.30 970.88 891.30 589.86 1401.43 1223.37

CROSS[1] 12.55 3.07 10.00 3.00 12.06 3.39 474min
1225.89 985.25 854.07 596.51 1391.83 1178.10

Because the neurons are randomly updated in the method
with CROSS-exchange[1], we conducted 10 simulations,
and averaged the results.

Table 1 shows computational results of the pro-
posed method (2TYPE)[10, 11] and the previous method
(CROSS)[1]. In Table 1, we show the total time for solv-
ing 56 instances. The ejection chain is introduced in the
same way. The simulation is cut at 1, 000 iterations for
both methods. The numbers indicated by boldfaces are av-
erage numbers of vehicles, and the numbers indicated by
light faces are average total travel distances for each prob-
lem type.

In Table 1, both methods (2TYPE and CROSS) show
similar performance, especially for the numbers of vehi-
cles. As for the total travel distance, the 2TYPE has better
performance than the CROSS for R1, R2 and C2. Although
the 2TYPE shows similar results obtained by the CROSS,
the proposed method takes shorter time than the previous
method.

5. A parameter adjusting approach

In a chaotic search, many parameters exist. Then, in or-
der to obtain a good result, it is strongly required to find an
effective parameter set. If we use a wrong parameter set,
neurons rarely fire. In such a case, a solution is hardly up-
dated, because improvement of the solution is performed
by the firing of the neurons. To avoid such undesirable sit-
uation, we propose a parameter adjusting approach for the
chaotic search. In this approach, a value of θ in Eq.(3) is
automatically adjusted using the firing rate of the neurons.

To realize this approach, we set a maximum firing rate
Fmax and a minimum firing rate Fmin. To keep the firing
rate of the neurons between Fmax and Fmin, we introduced
the following two control methods: (i) the value of θ is
decreased by 0.01, if the firing rate of the neurons is higher
than Fmax, and (ii) the value of θ is increased by 0.01, if the
firing rate of the neurons is less than Fmin. In addition, if
the firing rate of the neurons is between Fmax and Fmin, the
value of θ is fixed. Using this approach, even if the neurons
do not fire because of a wrong parameter set, the neurons
will fire as increasing in the value of θ.

However, high firing rate of the neurons leads to a fatal
situation that the neurons which have a small gain effect
(Eq.(2)) frequently fire. It means that operations which de-
teriorate the solution are frequently performed. To avoid
such a situation, we gradually decrease Fmax to Fmin by
0.01 at every iteration. By decreasing Fmax, the firing rate

of the neurons gradually decreases. Then, we expect that
the proposed adjustment approach has a similar effect as a
simulated annealing.

To evaluate the parameter adjusting approach, we con-
ducted computational simulation for wrong parameter sets
and good parameter sets. In these simulations, we solved
the Solomon’s benchmark problems whose initial solutions
are produced by the Bräysy construction method, and set γ
to 1, 000 in Eq.(1) as well as Section 4. The simulations
are cut at 1, 500 iterations. In the parameter adjusting ap-
proach, we set Fmax = 20, Fmin = 5.

First, as a wrong parameter set, we set the parameters of
Eqs.(2)–(4) as follows: β = 0.5, α = 0.5, kr = 0.94, θ =
0.6,W = 0, and ε = 0.002. Figure 2 shows the firing rate of
the neurons and the value of θ for R101, and Table 2 shows
the results for all the problems. In Fig.2(a), the firing rate
of the neurons is low. On the other hand, in Fig.2(b), the
firing rate of the neurons rises as the value of θ increases. In
addition, from the results of Table 2, solutions for all prob-
lems with the adjustment are better than the ones without
an adjustment. As a result, we confirmed that the solution
with the adjustment is better than the one without the ad-
justment.

Next, as an effective parameter set, we set the parameters
of Eqs.(2)–(4) as follows: β = 0.02, α = 0.2, kr = 0.94, θ =
0.6,W = 0, and ε = 0.002. Using the effective parame-
ter set, as well as the case of the wrong parameter set, we
evaluated the effectiveness of the parameter adjusting ap-
proach. Figure 3 and Table 3 show the results. In Fig.3(a),
the firing rate of the neurons is kept between about 5 per-
cent and 20 percent, and the result is better than that shown
in Fig.2(b). In Fig.3(b), the firing rate gradually decreases
by the parameter adjusting approach. As a result, a solution
for R101 with the adjustment is better than the one without
any adjustment. Moreover, in Table 3, solutions with the
adjustment are better than solutions without the adjustment
except RC2.

Although the performance with the adjustment is almost
the same as the one without adjustment in the case of the
effective parameter set, the parameter adjusting approach is
effective for wrong parameter sets. Thus, using the param-
eter adjusting approach, we can obtain good performance
even if we set the values of the parameters roughly. Sim-
ulation time is almost the same if we use the parameter
adjusting approach. In this simulation, difference of the
simulation time between the chaotic search with adjusting
approach and without one was about one minute.
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(a) R101 without an adjustment (Solution: 19 / 1717.88) (b) R101 with the adjustment (Solution: 19 / 1665.34)
(Solution: the number of vehicles / total travel distances)

Figure 2: Comparison of the firing rate of the neurons and the value of θ without a parameter adjustment (a), and with the
parameter adjustment (b) for R101 using a wrong parameter set.
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(a) R101 without an adjustment (Solution: 19 / 1664.50) (b) R101 with the adjustment (Solution: 19 / 1659.42)

Figure 3: Comparison of the firing rate of the neurons and the value of θ without a parameter adjustment (a), and with the
parameter adjustment (b) for R101 using an effective parameter set.

Table 2: Results of the case without and with adjustments
for all the problems in a wrong parameter set.
adjustment R1 R2 C1 C2 RC1 RC2

without 12.83 3.18 10.22 3.00 13.00 3.62
1285.21 1104.92 1010.93 602.65 1525.10 1318.37

with 12.42 3.09 10.00 3.00 12.38 3.38
1219.08 1002.67 873.21 589.93 1426.27 1238.50

6. Conclusion

To solve VRPTWs, we have already proposed a method
using two types of local searches driven by chaotic neu-
rons. From the computational simulations, the method
shows similar performance in reasonable time comparing
with the method using the CROSS exchange[1]. To im-
prove the performance, we proposed a new parameter ad-
justment approach for the chaotic search[1, 10, 11]. The
computational simulations show that the parameter adjust-
ment approach is very effective when we set a wrong pa-
rameter set. On the other hand, if the parameter set is good,
the performance with the adjustment is almost same as the
one without adjustment. However, as shown in Section 5,
the performance for many problems can be improved using
the parameter adjustment approach. Thus, it is an impor-
tant future work to analyze the effectiveness of the param-
eter adjusting approach and propose a better parameter ad-
justing approach for improvement the performance of the
chaotic search.
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Table 3: Results of the case without and with adjustments
for all the problems in a good parameter set.
adjustment R1 R2 C1 C2 RC1 RC2

without 12.50 3.09 10.00 3.00 12.12 3.38
1225.40 958.13 849.37 592.63 1380.86 1168.67

with 12.50 3.09 10.00 3.00 12.00 3.38
1206.07 950.22 834.37 590.25 1369.12 1186.27
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