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Abstract—This paper is concerned with a linearization
approach for nonlinear systems with delays in the state
variables using Chebyshev expansion. This approach is
based on coordinate transformation with respect to a lin-
earization function which is defined by Chebyshev polyno-
mials. The resulting time-delay linearized systems can be
analytically obtained by using Chebyshev expansion and
its inversion is simple. As a tentative application of this
linearization approach, a time-delay nonlinear observer is
synthesized. Numerical experiments are illustrated to show
effectiveness of this linearization for time-delay nonlinear
systems.

1. Introduction

Studies for linear systems with delays in the state vari-
ables have been developed and many theories were pro-
posed(e.g. [1]). On the other hands, a few of them have
been done for nonlinear systems with delays(e.g. [2, 3, 4]).
We have studied formal linearization methods for nonlinear
systems [5, 6, 7], and applied one of them to a time-delay
nonlinear system using Taylor expansion [8].

In this paper we develop a formal linearization for time-
delay nonlinear systems in order to improve the accuracy
of linearization by exploiting Chebyshev expansion [9]. By
introducing a linearization function that is composed of the
Chebyshev polynomials and a time-delay operator, time-
delay nonlinear systems are transformed into time-delay
linear ones with respect to the linearization function by us-
ing Chebyshev expansion. Its inversion is easy to obtain
because of having the original state values within the lin-
earization function. As an application of this linearization,
a nonlinear observer with delays is synthesized.

Numerical experiments are illustrated and indicate that
the accuracy of the approximation by the linearization
improves as the order of the Chebyshev polynomials in-
creases.

2. Formal Linearization

For the sake of simplicity, we consider a formal lin-
earization method for scalar systems. For vector systems,

it is straightforward. A nonlinear system with delays in the
state variable is given by

Σ1 : ẋ(t) = f
(
x(t)

)
+ g

(
x(t − `)

)
(1)

where t > 0 denotes time, overdot represents derivative
with respect tot, ` ∈ (0,∞) is the system delay,x is a state
variable, f ∈ C1 andg ∈ C1 are nonlinear functions. The
system initial conditions are given by

x(θ) = ϕ(θ) (−` ≤ θ < 0),

x(0) = x0. (2)

A formal linearization is based on Chebyshev expan-
sion [9]. Since the basic domain of the Chebyshev poly-
nomials is defined by

D0 = [−1, 1], (3)

x is changed intoy by

y =
x−m

p
∈ D0 (4)

wherem is the middle point of the operating domain ofx
and p half the operating domain. From Eq.(4), the given
nonlinear system(Eq.(1)) is expressed by

ẏ(t) =
1
p

{
f
(
py(t) + m

)
+ g

(
py(t − `) + m

)}
. (5)

The Chebyshev polynomials are defined by

Ti(y) = cos(i · cos−1 y) (6)

or,
T0(y) = 1, T1(y) = y, T2(y) = 2y2 − 1,

T3(y) = 4y3 − 3y, T4(y) = 8y4 − 8y2 + 1,

T5(y) = 16y5 − 20y3 + 5y, · · · .
The recurrence formula of the Chebyshev polynomials is
described by

Ti+1(y) = 2yTi(y) − Ti−1(y), (i ≥ 1), (7)

2007 International Symposium on Nonlinear Theory and its
Applications
NOLTA'07, Vancouver, Canada, September 16-19, 2007

- 112 -



T0(y) = 1, T1(y) = y,

and the derivative of the Chebyshev polynomials :

Si(y) ≡ dTi(y)
dy

has the recurrence formula :

Si+1(y) = 2Ti(y) + 2ySi(y) − Si−1(y), (i ≥ 1), (8)

S0(y) = 0, S1(y) = 1.

Using these Chebyshev polynomials, let us define an N-th
order linearization functionφ(·) = φ

(
y(·)

)
by

φ = [φ1, φ2, · · · , φi , · · · , φN]T

= [T1(y),T2(y), · · · ,Ti(y), · · · ,TN(y)]T . (9)

And let a time-delay operatorδ be

δ{y(t)} = y(t − `) . (10)

From the linearization function and the time-delay oper-
ator, the derivative of each element ofφ along with solution
of the given nonlinear system(Eq.(5)) is as follows:

φ̇i(y(t)) = Ṫi(y(t))

=
d
dy

Ti(y(t))ẏ(t) = Si(y(t))ẏ(t)

=
1
p

Si(y(t))
{

f
(
py(t) + m

)
+ g

(
pδy(t) + m

)}
. (11)

Note that Chebyshev expansion up to the N-th order derives

1
p

Si(y(t)) f
(
py(t) + m

)
=

N∑

j=0

ai j T j(y) + higher order (12)

where

ai j =
2
π

∫ 1

−1

1
pSi(y(t)) f

(
py(t) + m

)
T j(y)

√
1− y2

dy ( j , 0),

ai 0 =
1
π

∫ 1

−1

1
pSi(y(t)) f

(
py(t) + m

)
√

1− y2
dy

and

1
p

Si(y(t))
(
g
(
pδy(t) + m

))
=

N∑

j=0

bi j (δ)T j(y) + higher order

(13)
where

bi j (δ) =
2
π

∫ 1

−1

1
pSi(y(t))

(
g
(
pδy(t) + m

))
T j(y)

√
1− y2

dy ( j , 0),

bi 0(δ) =
1
π

∫ 1

−1

1
pSi(y(t))

(
g
(
pδy(t) + m

))

√
1− y2

dy .

From Eqs.(12) and (13), Eq.(11) is approximated by the
Chebyshev polynomials:

φ̇i(y) ≈
N∑

j=0

ai j T j(y) +

N∑

j=0

bi j (δ)T j(y), (i = 1, · · · ,N)

andφ̇ is approximated by

φ̇(y) = A(δ)φ(y) + B(δ) (14)

where

A(δ) = [ai j + bi j (δ)] ∈ RN×N (i, j = 1, · · · ,N) ,

B(δ) = [ai 0 + bi 0(δ)] ∈ RN (i = 1, · · · ,N) .

Thus a formal time-delay linear system is derived by

Σ2 : ż(y) = A(δ)z(y) + B(δ) , (15)

z
(
y(θ)

)
= φ

(ϕ(θ) −m
p

)
(−` ≤ θ < 0),

z(0) = φ
( x0 −m

p

)
.

Its inversion is simply obtained as follows. From Eq.(9),
an approximated value ˆx(t) is

x̂(t) = p[1 0 · · · 0]φ(y(t)) + m = p[1 0 · · · 0]z(t) + m .
(16)

3. Time-Delay Nonlinear Observer

As a tentative application of this method, we synthesize
a time-delay nonlinear observer. The system is the same as
Eq.(1):

ẋ(t) = f
(
x(t)

)
+ g

(
x(t − `)

)
(17)

and a measurement equation is assumed to be

η(t) = C(δ)φ ∈ RN (18)

whereC(δ) ∈ RN×N could be a matrix function with respect
to the time-delay operatorδ.

The time-delay nonlinear system (Eq.(17)) is trans-
formed into the time-delay linear one (Eq.(15)) by the for-
mal linearization as mentioned above. By applying the lin-
ear observer theory [10] to these time-delay linear systems
(Eqs.(15) and (18)), an observer is obtained as follows:

˙̂z(t) = A(δ) ẑ(t) + L(η − η̂) + B(δ), (19)

η̂ = C(δ) ẑ(t)

whereL ∈ RN×N is the observer gain.
This observer asymptotically converges if we could set

the gainL such that all poles ofA(δ)− LC(δ) have negative
real parts for anyδ. From the inversion of Eq.(16), the
estimatêx̂(t) is obtained by

ˆ̂x(t) = p[1 0 · · · 0]ẑ(t) + m .
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4. Numerical Experiments

We illustrate numerical simulations of the formal lin-
earization and the time-delay nonlinear observer.

4.1. Formal Linearization

Consider the following time-delay nonlinear system :

ẋ(t) = −x3(t) + cosx(t) + 2x(t − `) , (20)

ϕ(θ) = x0 (−` ≤ θ < 0),

x0 = 0, ` = 0.2 .

t
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 x^
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Figure 1:x and x̂ by the proposed linearization method
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Figure 2: Approximation errors by the linearization

This time-delay nonlinear system (Eq.(20)) is trans-
formed into a linear one (Eq.(15)). In this case,

f (x(t)) = −x3(t) + cosx(t),

g
(
x(t − `)

)
= 2x(t − `) = 2δx(t) .

When the order of the linearization function isN = 3, the
linearization function (Eq.(9)) is

φ(y) = [y, 2y2 − 1, 4y3 − 3y]T ,

t
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Figure 3:x and x̂ by the Taylor expansion method

coefficients of the formal time-delay linear system
(Eq.(15)) are

A(δ) =


−2.54+ 2δ −0.99 −0.14

3.19 −5.38+ 4δ −1.97
−15.7 + 12δ 4.79 −8.06+ 6δ

 ,

B(δ) = [1.29, −5.09+ 4δ, 0.916]T ,

and the initial condition is

φ(θ) = [y0, 2y2
0 − 1, 4y3

0 − 3y0]T (−` ≤ θ ≤ 0)

where
y0 =

x0 −m
p

in this problem. Solving a formal linear system (Eq.(15)),
the approximated solution ˆx(t) of the nonlinear system
(Eq.(20)) is obtained by the inversion (Eq.(16)).

Fig. 1 shows the true valuex(t) which is solution of
Eq.(20), and the approximated values ˆx(t) when the order
of the linearization function is varied asN = 1 to 4. Fig. 2
depicts these errors by

J(t) =

∫ t

0

(
x(τ) − x̂(τ)

)2
dτ.

For comparison, Fig. 3 showsx(t) and x̂(t) by the con-
ventional method based on Taylor expansion [8] when the
order of the linearization functionN = 1 to 4.

4.2. Time-Delay Nonlinear Observer

Let a time-delay nonlinear system be the same as before
in Eq.(20):

ẋ(t) = −x3(t) + cosx(t) + 2x(t − `) , (21)

ϕ(θ) = x0 (−` ≤ θ < 0),

x0 = 0, ` = 0.2 .

and a measurement equation be given by

η(t) = C(δ)φ(t), (22)
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C(δ) =


δ 0 0
0 δ 0
0 0 δ

 .

From the given nonlinear system Eqs.(21) and (22), an
observer (Eq.(19)) is obtained by the formal linearization
in Section 3 as follows:

˙̂z(t) = A(δ)ẑ(t) + L(η − η̂) + B(δ), (23)

η̂ = C(δ)ẑ(t) .

If we set the parameters for the time-delay nonlinear ob-
server asN = 3 by

L =


2 0 0
0 4 0
12 0 6

 , (24)

the poles of

A(δ) − LC(δ) =


−2.54 −0.99 −0.14
3.19 −5.38 −1.97
−15.7 4.79 −8.06



are
{−4.29+ 2.43i, −4.29− 2.43i, −7.4} .

Thus, an estimate of this observer (Eq.(23)) asymptotically
converges to the true value.

Fig. 4 shows the true valuex(t) and the estimatê̂x(t)
when the unknown initial value iŝ̂x(0) = 2 and the order of
the linearization function isN = 3.

t
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x^̂x,
 x^̂

0 0.5 1 1.5 2 2.5
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Figure 4: Estimate by time-delay nonlinear observer

5. Conclusions

We have develop a formal linearization method for time-
delay nonlinear systems using Chebyshev expansion in or-
der to improve accuracy of the linearization. As an appli-
cation of this method, we synthesize a time-delay nonlin-
ear observer. Numerical experiments show that accuracy of
this method is better than the conventional method based
on Taylor expansion and improves as the order of the lin-
earization function increases.
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