
A Fuzzy Estimation Theory for Available Operation of
Extremely Complicated Large-Scale Network Systems

Kazuo HORIUCHI†

†Professor Emeritus, Waseda University
Tokyo 169-8555, Japan

Email: noriko@oishi.info.waseda.ac.jp

Abstract—In this paper, we shall describe about a fuzzy
estimation theory based on the concept of set-valued op-
erators, suitable for available operation of extremely com-
plicated large-scale network systems. Fundamental condi-
tions for availability of system behaviors of such network
systems are clarified in a form ofβ-level fixed point the-
orem for system of fuzzy-set-valued operators. Here, the
proof of this theorem is accomplished in a weak topology
introduced into the Banach space.

1. Introduction

In order to effectively evaluate, control and maintain
extremely complicated large-scale networks, as a whole,
the author has recommended to introduce some connected-
block structure:i.e., whole networks might be separated
into several blocks which are carefully self-evaluated, self-
controlled and self-maintained by themselves, and so,
which are originally self-sustained systems. However, by
always carefully watching each other, whenever they ob-
serve and detect that some other block is in ill-condition
by some accidents, every block can repair and sustain that
ill-conditioned block, through inter-block connections, at
once. This style of maintenance of the system is sometimes
called as locally autonomous, but the author recommends
that only the ultimate responsibility on observation and reg-
ulation of whole system might be left for headquarter itself,
which is organized over all blocks [1].

Here, let us consider Banach spacesXi (i = 1, · · · ,n)
and Yj ( j = 1, · · · ,n), and their bounded convex closed
subsetsX(0)

i andY(0)
j , respectively, corresponding to each

block,Bi andBj of whole network system. Let us introduce
operatorsfi j : Xi → Yj such thatfi j (X

(0)
i ) ⊂ Y(0)

j and let fi j
be completely continuous onX(0)

i .
For each blockBi(i = 1, · · · ,n), dynamics of system be-

haviors can be represented originally by simple equations:

xi = αi fii (xi), (i = 1, · · · , n), (1)

whereαi is a continuous operator:Y(0)
i → X(0)

i . These
equations have solutionsx∗i in everyX(0)

i (i = 1, · · · ,n), ac-
cording to the well-known Schauder’s type of fixed point
theorem. Of course, these solutions represent original val-
ues of system behaviors. On the otherhand,fi j ( j , i) repre-
sents the operation fed-back through all other blocks (j , i)

into the originali-th block, andf ji ( j , i) represents inter-
block connections from all other blocks, in order to repair
and sustain thei-th block performance.

However, the fluctuation imposed on the actual system
is nondeterministic rather than deterministic. Therefore, it
is reasonable to consider some suitable subset of the range
of system behavior, in place of single ideal point, as tar-
get which the behavior must reach under influence of sys-
tem control. Now, we can name it as an “available range”
of the system behavior. Thus, by the available range, we
mean the range of behavior, in which every behavior ef-
fectively satisfies good conditions beforehand specified, as
a set of ideal behaviors. From such a point of view, the
theory for fluctuation imposed on the system should be de-
veloped concerning the set-valued operator.

Several years ago, the author gave a general type of fixed
point theorem for the system of set-valued operator equa-
tions, in order to treat with extremely complicated large-
scale network systems [1], [2], [3]. Namely, by introduc-
ing n set-valued operatorsGi : Xi × Πn

j Yj × ΠnYi → F (Xi)
(the family of all non-empty closed compact subsets ofXi)
(i = 1, · · · ,n), whereΠn

j Yj means the direct product ofn
Yj ’s, for any j ∈ {1, · · · ,n}, andΠnYi means direct product
of n Yi ’s, for fixed i, the author presented important fixed
point theorems on the system of set-valued operator equa-
tions:

xi ∈ Gi(xi ; fi1(xi), · · · , fin(xi); f1i(x1), · · · , fni(xn)),
(i = 1, · · · , n).

(2)

For convenience’ sake, let us define a direct product
spaceYi

△
=
∏n

j Yj ×
∏n Yi and also letY(0)

i be a non-empty
bounded closed convex subset ofYi . Here, let us consider
a vectorvi

△
= (xi , · · · , xi ; x1, · · · , xn) ∈ Vi and an operator

fi(vi) : Vi → Y i by

fi(vi)
△
= ( fi1(xi), · · · , fin(xi); f1i(x1), · · · , fni(xn)) . (3)

Here, we know thatyi j
△
= fi j (xi) ∈ Yj , y ji

△
= f ji (x j) ∈ Yi and

yi
△
= (yi1, · · · , yin; y1i , · · · , yni) ∈ Y i . Therefore, we have a

simple representation of the system of set-valued operator
equations (2), as follows:

xi ∈ Gi(xi ; fi(vi)), (i = 1, · · · ,n). (4)
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Recently, the author presented a refined estimation the-
ory for such large-scale network systems, by using the
fuzzy concept, but under some natural assumptions, at the
NOLTA 2004 symposium and further as a paper in the
transactions of the IEICE, Fundamentals.[6]

Here, we will approve the same theory with a more re-
fined verification, introducing the weak topology into the
Banach space.

2. Fuzzy Set and Fuzzy-Set-Valued Operator

First of all, let us consider a family of all fuzzy sets
originally introduced by Zadeh [4], in a Banach spaceX
with the norm∥ ∥, and let any fuzzy setA be character-
ized by a membership functionµA(x) : X → [0,1]. Now,
we can consider anα-level setAα of the fuzzy setA as
Aα

△
= {ξ ∈ X|µA(ξ) ≥ α}, for any constantα ∈ (0,1]. The

fuzzy setA is called compact, if allα-level sets are compact
for arbitraryα ∈ (0,1].

A fuzzy-set-valued operatorG from X into X is defined
byG : X→ F (X), whereF (X) is a family of all non-empty
, bounded and closed fuzzy sets inX. If a point x ∈ X is
mapped to a fuzzy setG(x), the membership function of
G(x) at the pointξ ∈ X is represented byµG(x)(ξ).

For convenience, let us introduce a useful notation: for
an arbitrarily specified constantβ ∈ (0,1], a pointx belongs
to theβ-level setAβ of the fuzzy setA: x ∈ Aβ

△
= {ξ ∈ X |

µA(ξ) ≥ β} is denoted byx ∈β A [5].
Here, let us introduce a new concept ofβ-level fixed

point: for the fuzzy setG(x), if there exists a pointx∗ such
that x∗ ∈β G(x∗), thenx∗ is calledβ-level fixed point of the
fuzzy-set-valued operatorG [5].

Now, let us remember that we have introduced a new
metric into the space of fuzzy sets [5, 6].

Definition 1 Let us consider a Banach space X, ρ. For any
fixed constantβ ∈ (0,1], theβ-level metricρβ between a
point x∈ X and a fuzzy set A is defined as follows:

ρβ(x,A)
△
= inf
β≤α≤1

dα(x,A), (5)

where

dα(x,A)
△
=


inf
y∈Aα
∥x− y∥ if α ≤ αA,

inf
y∈AαA

∥x− y∥ if α > αA.
(6)

Here,αA
△
= supx∈X µA(x). And also, for any fixed constant

β ∈ (0,1], by means of the Hausdorffmetric dH, theβ-level
metricHβ between two fuzzy sets A and B is introduced as
follows:

Hβ(A, B)
△
= sup
β≤α≤1

Dα(A, B), (7)

where Dα is defined as

Dα(A, B)
△
=



dH(Aα, Bα)
if α ≤ min{αA, αB},

dH(AαA, Bα)
if αA < α ≤ αB,

dH(Aα, BαB)
if αA ≥ α > αB,

dH(AαA, BαB)
if α > max{αA, αB}.

(8)

Here,αB
△
= supx∈X µB(x) and the Hausdorff metric dH be-

tween two sets S1 and S2 is defined by

dH(S1,S2)
△
= max{sup{d(x1,S2)|x1 ∈ S1},

sup{d(x2,S1)|x2 ∈ S2}},

where d(x,S)
△
= inf {∥x− y∥ | y ∈ S} is the distance between

a point x and a set S .

In order to give a new methodology for the discussion
more sophisticated than the one by usual set-valued op-
erators, the author presented mathematical theories based
on the concept ofβ-level fixed point, by establishing fixed
point theorems forβ-level fuzzy-set-valued nonlinear oper-
ators which describe detailed characteristics of such fuzzy-
set-valued nonlinear operator equations, for every level
β ∈ (0,1] [5, 6].

3. System of Fuzzy-Set-Valued Operator Equations

Now, let us introduce a more fine estimation theory for
available operation of large-scale system of set-valued op-
erators (4), by introducingβ-level fuzzy estimation.

Originally, these sets are crisp. However, in order to
introduce more fine estimation into these resultant fluctu-
ation sets, here we can reconsider anew these setsGi as
fuzzy sets. Then, let us replace the above described crisp
setsGi(xi ; fi(vi)) by fuzzy sets with same notations, accom-
panied with suitable membership functionsµGi(ξi), ξi ∈ Xi ,
which should be properly introduced corresponding to con-
scious planning for the fine evaluation of resultant fluctua-
tions themselves.

In order to realize a more precise analysis, let us intro-
duce different values ofβ asβi (i = 1, . . . , n), consciously
selected corresponding to every blockBi .

Now, for any fixed constantβi ∈ (0,1] (i = 1, . . . , n), we
can introduce a system ofβi-level fuzzy-set-valued nonlin-
ear operator equations:

xi ∈βi Gi(xi ; fi(vi)), (i = 1, · · · , n). (9)

If there exists a set ofβi-level fixed points{x∗i } in X(0)
i

(i = 1, · · · ,n), which satisfy the system ofβi-level fuzzy-
set-valued operator equations (9), eachx∗i can be con-
sidered as aβi-level likelihood behavior of the blockBi ,
(i = 1, · · · ,n). Here, thisβi-level likelihood behaviorx∗i
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can be found in a closed domain in which the membership
functionµGi (x∗i ; fi (v∗i ))(ξi) has value larger than or equal toβi .

As shown in the Introduction, we know that the origi-
nal system of nonlinear operator equations (1) has the de-
sired solutionx(0)

i in every X(0)
i (i = 1, · · · ,n). In order

to establish a fine estimation in the fuzzy spaceX(0)
i , we

can conveniently specify the membership functionµGi (ξi)
in bell-shape such that the desired solutionx(0)

i gives the

maximum value ofµGi : βi M
△
= maxξi∈Xi µGi (x∗i ; fi (v∗i ))(ξi). As

results, if we arbitrarily select two valuesβi , β
′
i ∈ (0,1] such

thatβi > β
′
i , we can expect a more fine likelihood fuzzy es-

timation forβi-level than the one forβ′i -level.
In the case of single variable system, we can illustrate

an example of theβi-level likelihood estimation for a bell-
shape membership function, as in Figure 1.

βM

β

β′

x∗i x(0)
i

X̃(0)
i

Giβi

Giβi ′

ξi for scalarxi

µGi (x∗i , fi (v
∗
i ))(ξi )

Available Subset̃X(0)
i

x(0)
i = fi (x

(0)
i )

x∗i ∈βi Gi (x∗i , fi (v
∗
i )){

Giβi
△
= {ξi ∈ Xi |µGi (ξi ) ≥ βi }

Giβi ′
△
= {ξi ∈ Xi |µGi (ξi ) ≥ βi ′}{

Figure 1: An illustrative example of theβi-level estimation
for bell-shape fuzzy fluctuation from the desired behavior
x(0)

i , in the case of single variable system

On the one hand, when the signalx∗i is found in a suffi-
ciently small preassigned closed subsetX̃(0)

i ⊂ X(0)
i , con-

taining the desired signalx(0)
i , x∗i can be considered as

“available”. Henceforth, let us call such anx∗i as an “avail-
able” asβi-level likelyhood behavior.

If we selectβi ∈ (0,1] sufficiently high,i.e., near to unity,
then theβi-level setGiβi

△
= {ξi ∈ Xi |µGi (ξi) ≥ βi} is so small

thatGiβi ⊂ X̃(0)
i , and as result, the solutionx∗i becomes to

be available, as aβi-level likelihood behavior of the block
Bi .

4. Fixed Point Theorem For System ofβi-level Fuzzy-
Set-Valued Operators

Here, we will present a mathematical theory of the fixed
point theorem for such a general system ofβi-level fuzzy-

set-valued operator equations.
For the first step, let us introduce reflexive, or uniformly

convex, real Banach spacesXi (i = 1, · · · ,n), in which
the norm is represented by∥ · ∥, and also their non-empty
bounded closed convex subsetsX(0)

i (i = 1, · · · ,n). Let X
′

i
be the dual space ofXi and let us introduce a weak topol-
ogyσ(Xi ,X

′

i ) into Xi . Then,Xi is locally convex topolog-
ical linear space, and therefore,X(0)

i is weakly closed and
weakly compact. Further, let us consider another real Ba-
nach spacesYj ( j = 1, · · · ,n) in which the norm is repre-
sented by∥ · ∥.

Now, let us introduce a series of assumptions:

Assumption 1 Let the operator fi j : X(0)
i → fi j (X

(0)
i ) ⊂ Yj

be completely continuous in the sense that when a weakly
convergent net{xνi } (ν ∈ J: a directive set) weakly con-
verges tox̄i , then the sequence{ fi j (xνi )} has a subsequence
which strongly converges to fi j (x̄i) in Yj .

Assumption 2 Let the fuzzy-set-valued operator Gi :
X(0)

i × Yi → F (Xi) (a family of all non-empty closed com-
pact subsets of Xi) satisfies the following Lipschitz condi-
tion with respect to theβi-level metricHβi : that is, there
are two kinds of constants0 < pi < 1 and qi > 0 such that
for any x(1)

i , x
(2)
i ∈ Xi , for any y(1)

i , y
(2)
i ∈ Yi , Gi ’s satisfy

inequalities:

Hβi

(
Gi(x

(1)
i ; y(1)

i ),Gi(x
(2)
i ; y(2)

i )
)

≤ pi ·
∥∥∥x(1)

i − x(2)
i

∥∥∥ + qi ·
∥∥∥y(1)

i − y(2)
i

∥∥∥ . (10)

where,
∥∥∥yi

∥∥∥ △= ∑n
j=1

∥∥∥yi j

∥∥∥ +∑n
j=1

∥∥∥y ji

∥∥∥.
Assumption 3 For any xi ∈ X(0)

i and fi(vi) ∈ Yi ,

G(0)
i (xi fi(vi))

△
= Gi(xi ; fi(vi)) ∩ X(0)

i , ϕ. Moreover, there

exist projection points̃xi
′ ∈ X(0)

i of arbitrary point x
′

i ∈ X(0)
i

upon the set G(0)
iβi

(xi fi(vi)) such that∥∥∥x̃i
′ − x

′

i

∥∥∥ = min
{ ∥∥∥x′i − zi

∥∥∥ ∣∣∣ zi ∈ G(0)
iβi

(xi fi(vi))
}
, (11)

where Giβi

△
=
{
ξ ∈ Xi |µGi (ξ) ≥ βi

}
.

Assumption 4 (Rockafellar [7]) For any x(1)
i , x

(2)
i , ∈ X(0)

i ,
and for any constant r(0 < r < 1), uniformly with respect
to everyyi ∈ Yi , Gi satisfies the relation:

r ·Giβi

(
x(1)

i ; yi

)
+ (1− r) ·Giβi

(
x(2)

i ; yi

)
⊂ Giβi

(
r · x(1)

i + (1− r) · x(2)
i ; yi

)
.

(12)

Then, we have an important lemma:

Lemma 1 For all i (i = 1, · · · ,n), let us adopt arbi-
trary points xi ≡ z(0)

i ∈ X(0)
i and also fix all values of

fi(v
(0)
i ), v(0)

i
△
=
(
x(0)

i , · · · , x
(0)
i ; x(0)

1 · · · x
(0)
n

)
. Now, for ev-

ery i, let us introduce a sequence{zk
i } (k = 0,1,2, · · ·),

starting from the above-adopted point z(0)
i , and with each
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zk
i ∈ X(0)

i as a projection point of zk−1
i ∈ X(0)

i upon the

set Giβi

(
zk−1

i ; fi(v
(0)
i )
)
. Then, this sequence{zk

i } (k =
0, 1,2, · · ·) is a Cauchy sequence, having its own limit
pointsz̄i ∈ X(0)

i , such that

z̄i ∈βi G(0)
i

(
z̄i ; fi(v

(0)
i )
)
, (i = 1, · · · ,n) . (13)

Here, the correspondence from the starting pointz(0)
i ≡

xi ∈ X(0)
i to the limit pointsz̄i ∈ X(0)

i is multivalued, in
general, and hence, by this correspondence we can define
a set-valued operatorHi : xi → {z̄i} in Xi ; i.e., z̄i ∈ Hi(xi).
If this set-valued operatorHi has a fixed pointx∗i : i.e., x∗i ∈
Hi(x∗i ), then it satisfies the system of equations:

x∗i ∈βi G(0)
i

(
x∗i ; fi(v

∗
i )
)
, (i = 1, · · · ,n) (14)

by Eq. (13) with the correspondingv∗i
△
=(

x∗i , · · · , x∗i ; x∗1, · · · , x∗n
)
.

This x∗i is to be the solution of the system ofβi-level
fuzzy-set-valued operator equations (14), refined in the
weak topology from Eq. (4).

Here, we can easily recognize that the operatorHi is up-
per semicontinuous and the range ofHi is closed and con-
vex.

Therefore, in order to verify the existence of the fixed
point x∗i of Hi , now, we can apply the well-known fixed
point theorem for set-valued operator:

Lemma 2 (Ky Fan [8]) Let Xi be a locally convex topo-
logical linear space, and X(0)

i be a non-empty convex com-

pact subset of Xi . LetHc(X
(0)
i ) be the family of all non-

empty closed convex subset of X(0)
i . Then, for any upper

semicontinuous set-valued operator Hi : X(0)
i → Hc(X

(0)
i ),

there exists a fixed point x∗i ∈ X(0)
i such that x∗i ∈ Hi(x∗i ).

As a result, we have a theorem:

Theorem 1 Let Xi be a reflexive, or uniformly convex, real
Banach space, and X(0)

i be a non-empty bounded closed
convex subset of Xi . By the dual space X

′

i , let us intro-
duce a weak topologyσ(Xi ,X

′

i ) into Xi . Let fi j and Gi be
deterministic and fuzzy-set-valued operators, respectively,
which satisfy the series of assumptions 1 to 4. Then, we
have a Cauchy sequence{zk

i } ⊂ X(0)
i (k = 0,1,2, · · ·), in-

troduced by the succesive procedure in Lemma 1. This se-
quence has a set of limit points{z̄i}, and we can define a
set-valued operator Hi by the correspondence from the ar-
bitrary starting point z(0)

i ≡ xi ∈ X(0)
i to the set of limit

points{z̄i} in X(0)
i : z̄i ∈ Hi(xi). This set-valued operator Hi

has a fixed point x∗ in X(0)
i , which is, in turn, the solution of

the system ofβi-level fuzzy-set-valued operator equations
(14).

5. Concluding Remark

Thus, the fluctuation analysis of this type of large-scale
network systems, undergone by undesirable uncertain fluc-
tuations, can be successfully accomplished at arbitrarily
fine-level of estimation, by immediate application of the
here-presented fixed point theorem for system ofβi-level
fuzzy-set-valued nolinear operators, with consciously se-
lected different value of parameterβi , for every blockBi .
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