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Abstract—Marked point process data are time series of
discrete events which have some values as marks. A def-
inition of a distance for marked point process data allows
us to apply nonlinear time series analysis for marked point
process data. However, the existing method uses only ap-
proximations of distances due to computational complex-
ity. Here, we calculate exact values of distances and apply
some methods of nonlinear time series analysis to a series
of local maxima from a Rössler model. Results indicate the
effectiveness of distance-based approach to analyze marked
point process data.

1. Introduction

A point process produces a time series of discrete events.
A typical example of a point process is action potentials
of neurons. Like action potentials, point processes, whose
events are identical, are called “simple point process.” Dif-
ferently from action potentials, events of earthquake occur-
rence are not identical, namely, each event is marked by its
magnitude and the position of its seismic center. We call
such process “marked point process.” Due to the discrete-
ness of marked point process data, many methods for time
series analysis, which are intended for continuous data, are
inapplicable to marked point process data.

However, we can apply many methods to point process
data based on its distances. For simple point process data,
there exist some distances [1, 2, 3]. Using these distances,
many methods have been applied to simple point process
data, including clustering [4], fitting to the model [5],
multi-dimensional scaling [6], classification [7], and recon-
struction of input signals from spike trains [8]. The dis-
tance for marked point process data is proposed by Suzuki
et al. [9]. This distance is the minimum cost required to
transform one data into the other one. Based on the dis-
tance, they obtained recurrence plots, which visualize re-
currences in time series, of exchange tick data of foreign
currencies.

Although the definition of distances allows us to apply
many methods to marked point process data, it has not been
confirmed that results obtained by such analysis correctly
reflect properties of the process which generated the ob-
served marked point process data. The results might be

spurious and independent of the underlying process. Thus,
we investigated the relation between the results obtained by
analyses based on the distance and actual properties of the
underlying process. We applied some methods of nonlinear
time series analysis to a series of local maxima of a Rössler
model as an example.

2. Method

2.1. Distance for Marked Point Process Data

The distance for marked point process data [9] is defined
as the minimum cost of transformation of one data into
another one by shifting, inserting, and removing events.
Let xi = (xi0, . . . , xim) denote the ith event, where xi0 is
the occurrence time of the event and xi j is the value of its
jth mark. When we have two marked point process data
X = {xi} and Y = {yi}, we consider the set of pairs of
events,

C = {(xk, yl) ∈ X × Y|xk , xk′ (∀k , k′), yl , yl′ (∀l , l′)}.
(1)

This set represents the procedure to transform the data X
into Y. The element (xk, yl) in this set means that the kth
event of X is shifted to the position of the lth event of Y.
Events of X not contained in pairs of C are removed and
those of Y are inserted. Then, the distance for marked point
process data [9] is defined as below,

D(X,Y) = min
C

∑
(xk ,yl)∈C

m∑
n=0

λn|xkn−yln|+ |X|+ |Y|−2|C|. (2)

Here, λn is the cost of shifting the value of the nth mark.
To apply nonlinear time series analysis methods to

marked point process data, we used a sliding window
which is shifted by a fixed amount along the time axis.
Then we calculated the distance for each pair of windows.
When the edge of the window passes through an event, the
distance suddenly jumps due to appearances or disappear-
ances of events from the window. We considered events
before or after the window to avoid such jumps as the lit-
erature [8]. We considered 4 options: include one event
before the window; include one event after the window; in-
clude events before and after the window; include no events
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out of the window. We calculated distances for all of 16
possible combinations of these options and adopt the min-
imum one as the distance between two windows. Finally,
we replaced the distance by the shortest route length in the
weighted complete graph.

When we calculate the distance for marked point pro-
cess data, it is required to solve the minimization problem
of the cost of transformation. Because this minimization
consumes much time, in the original literature [9], authors
approximated the distance with a numerical optimization
method. To validate analysis based on this distance, we
calculated exact values of distances.

2.2. Estimation of the Largest Lyapunov Exponent

Lyapunov exponents characterize the rate of separation
of close trajectories of a dynamical system. The sign of the
maximal Lyapunov exponent (MLE) indicates the stability
of the system. We can estimate the MLE only using dis-
tances among states by measuring the rate of separation of
the close trajectories directly [10].

We suppose that we have the time series of the state X(t).
Let U(t) denote the time indices of neighbors of the state
at the time t, i.e., U(t) = {t′|D(X(t), X(t′)) < ε}. Then we
compute

S (τ) =
1
T

T∑
t=1

ln

 1
|U(t)|

∑
t′∈U(t)

D(X(t + τ), X(t′ + τ))

 . (3)

Here, T is the length of the time series. The slope of the
plot of S (τ) vs. τ corresponds to the MLE.

2.3. Recurrence Quantification Analysis

Recurrence plots [11, 12] visualize the recurrence struc-
tures of dynamical systems. The recurrence plot of the time
series X(t) of length T is the matrix,

Ri, j =

{
1, D(X(i), X( j)) < ε,
0, otherwise, (4)

where ε is the threshold. We plot a dot at (i, j) if and only
if Ri, j = 1. We can intuitively read out various features
of dynamical systems from their recurrence plots. Recur-
rence quantification analysis (RQA) [12, 13, 14] quantifies
structures of recurrence plots.

One of the most important structures is the number of
diagonal lines of length l, i.e.,

N(l) =
T∑

i=1

T∑
j=i+1

(1 − Ri−1, j−1)(1 − Ri+l, j+l)
l∏

k=0

Ri+k, j+k. (5)

A diagonal line of length l indicates that two segments of
the trajectory are close during l time steps. Hence, the aver-
age diagonal line length corresponds to the mean prediction
time.

The τ-recurrence rate, which is defined as

RR(τ) =
1

T − τ

N−τ∑
i=1

Ri,i+τ, (6)

indicates the probability that the state returns to its neigh-
borhood after τ time steps. The τ-recurrence rate general-
izes the auto-correlation function.

2.4. Reconstruction of Original Time Series

Hirata et al. [8] demonstrated that the encoded signals
can be reconstructed from neural spike trains on the ba-
sis of distances for simple point process data. They con-
verted the spike train into a real-valued time series using
the Isomap [15], which is one of the methods for dimen-
sionality reduction.

3. Results

To validate nonlinear time series analysis of marked
point process data based on distances, we applied the meth-
ods mentioned above to a series of local maxima of the
Rössler model [16]. The Rössler model is defined as

dx
dt

= −y − z,

dy
dt
= x + ay, (7)

dz
dt
= b + z(x − c).

Here, a, b, and c are parameters. We integrated Eq. (7)
with a = 0.1, b = 0.1, and c ∈ {5, 6, . . . , 20} for 1000 time
units. The bifurcation diagram is illustrated in Fig. 1. We
observed various types of behavior including periodic and
chaotic dynamics in the range of c ∈ [5 20].

Figure 1: Bifurcation diagram of Rössler model. The ver-
tical axis is the values of local maxima of x(t).

Marked point process data are generated by recording
the time and the value of local maxima of x(t) as shown in
Fig. 2. A time window of length 20 is shifted by 1 time
unit.

We calculated distances between these windows as men-
tioned above. We set the value of all parameters λn in Eq. 2
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Figure 2: Example of marked point process data. Black
circles indicate events, namely local maxima of x(t). The
gray curve is the time series of x(t).

to 1. Moreover, we recorded the value of x at the center of
a window as the representative of the segment of the trajec-
tory in the window and calculated the Euclidean distances
between these points. Hereafter, we refer these representa-
tive values of windows and these distances as “original time
series” and “original distances,” respectively. Distances for
the marked point process data and original distances were
highly correlated. Correlation coefficients were distributed
in the range from 0.83 to 0.96.

Maximal Lyapunov exponents estimated from distances
for marked point process data and original time series are
plotted in Fig. 3. MLEs estimated from marked point pro-
cess data almost correspond to those from original time se-
ries. Both MLEs are almost 0 when the system is periodic.
On the other hand, MLEs take larger value in the chaotic
regime.

Figure 3: Plot of maximal Lyapunov exponents (MLE) vs.
c. MLEs are plotted over the scaled bifurcation diagram
(gray dots). Black crosses and circles indicate MLEs es-
timated from marked point process data and original time
series, respectively.

We obtained recurrence plots of marked point process
data and original time series. The threshold ε in Eq. 4 was
set to obtain a probability of 0.01 for plotting a dot. Fig. 4
illustrates examples of recurrence plots of the original time
series and the marked point process data. These plot ex-
hibits similar structures.

Figure 4: Recurrence plots with c = 20. (a) The recurrence
plot of the original time series. (b) The recurrence plot of
the marked point process data.

Average diagonal line lengths of these recurrence plots
are plotted in Fig. 5. Trends of two plots roughly agree.
Both curves exhibit smaller values in the chaotic regime.

Figure 5: Plot of average diagonal line length vs. c. As
the case of MLE, average diagonal line length is plotted
over the bifurcation diagram. The solid line and circles
indicate average diagonal line lengths of recurrence plots
of the original time series. The dashed line and crosses
those of marked point process data.

Further, we calculated correlation coefficients between
the τ-recurrence rates of the original time series and that
of the marked point process data. The minimum value was
0.96. Thus, two τ-recurrence rates were highly correlated
in all cases.

Finally, we attempted to reconstruct the original time se-
ries of x(t) from the marked point process data. The first
100 time units of the original time series and the recon-
structed time series of the case of c = 20 are plotted in
Fig. 6. The reconstructed time series agreed well with the
original time series. Moreover, correlation coefficients be-
tween the original and reconstructed time series are larger
than 0.95 in all cases.

4. Conclusion

By defining a distance, we can apply many methods
of nonlinear time series analysis to marked point process
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Figure 6: Reconstruction of the original time series from
the marked point process data. The first 100 time units of
the original time series of x(t) with the parameter c = 20 is
plotted by the black solid curve. The dashed line and black
circles indicate the reconstructed time series from marked
point process data.

data. However, it was unknown whether the results ob-
tained by such analysis actually reflect the underlying dy-
namics which generated the observed marked point process
data or not.

We applied some methods of nonlinear time series anal-
ysis based on distances for data to marked point process
data generated by Rössler model. Results indicated that
characteristics estimated from marked point process data
agreed well with those estimated from the original time se-
ries. Moreover, those characteristics could distinguish be-
tween periodic and chaotic behavior of the original dynam-
ics.
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