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Abstract—Recently, a new method was proposed by the
present authors to construct a complex network based on a
deterministic model from any given time series data. In this
new method, a weighted directed network embodying time
structure of the corresponding scalar time series is con-
structed. We apply the method to classify several models
and investigate their network topology.

1. Introduction

Understanding the complex features of various dynam-
ical systems in the real world continues to be a crucial
challenge across physical, natural, and social sciences. For
better understanding of such complicated interactions, itis
useful to first transform the system into a new frame of ref-
erence. Recently, a new method was proposed to construct
a complex network based on a deterministic model from a
time series [1]. In this method, a weighted directed network
embodying time structure of corresponding scalar time se-
ries is constructed. Walker et al. applied a simplified ver-
sion of this method to collate the predictive properties of
individual granular sensors in a series of biaxial compres-
sion tests and showed the effectiveness of the method [2].

In the analysis of a time dependent phenomenon pro-
duced by a complicated system, we usually start by sim-
ply observing the time series data of the phenomenon, ex-
pecting the data as a full manifestation of the nature of the
phenomenon. Then we build a model from the time se-
ries. We often encounter the cases in which the models
built from several time series have the same basis functions
with slightly different parameters. In such cases, it is not
easy to distinguish these model from one another. If such
distinction could be possible, it would give us deeper un-
derstanding of the nature of these phenomena. We consider
that the new network construction method proposed by the
present authors can be applied to make this distinction, or
the classification of time series [1].

In this paper we first review the method of constructing a
complex network based on a deterministic model structure
from a given time series, and then apply the method to four
models. Based on the results, we investigate the relation-
ship between their network topologies and the nature of the
time series.

2. Methodology

The method described here is composed of two steps:
(i) building a Reduced Auto-Regressive (RAR) model from
a given time series and (ii) constructing a complex network
from the RAR model.

2.1. Building an RAR model

Given a time series{xt}
n
t=1 of n observations, an RAR

model with the largest time delayw can be expressed by

x(t) = a0+a1x(t−l1)+a2x(t−l2)+· · ·+awx(t−lw)+ε(t), (1)

whereai (i = 0,1,2 . . . ,w) are unknown parameters, and
ε(t) is assumed to be unknown independent and identically
distributed random variables, which are interpreted as fit-
ting errors. The parametersai are chosen to minimize the
sum of squares of the fitting errors [3].

Among the various information criteria used to find
the best (optimal) model, we employ the description
length (DL) proposed by Rissanen [4]. The DL formula
is

DL(k) = n ln
eT e
n
+ k ln n, (2)

wheren is the number of data points,k is the model size
ande is the fitting errors.

2.2. Constructing a network

After building an RAR model, we transform the model
into a directed network (i) by representing each termx(t)
at time t by a node labelled by the time and (ii) by draw-
ing an arrow directed from a nodex(t − i) to the nodex(t),
where the time delay termx(t−i) appears in the RAR model
for the expression ofx(t). This arrow represents the in-
fluence ofx(t − i) on x(t) with time delayi. We interpret
the absolute value of the parameterai as the “influence” of
x(t − i) on x(t) and transform the influence as a “distance”
between nodesx(t) and x(t − i) using ai on the network
space; the larger the absolute value ofai, the shorter the
distance betweenx(t) andx(t − i). Although there may be
several ways to introduce an appropriate “distance,” we in-
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troduce the following simple distance based on elementary
linear algebra1.

Equation (1) can be interpreted as the scalar product of
the coefficient vector

~a ≡ (a1, a2, . . . , aw) , (3)

and the set of linearly independent “unit vectors”,
(x(t − l1), x(t − l2), . . . , x(t − lw)), where the constant pa-
rametera0 andε(t) are not used because these contain no
time information. By this interpretation, we introduce the
“angle” θi between the directions ofx(t) andx(t − i) as

θi ≡ arccos
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The distance we introduce should have following proper-
ties . Firstly, when vectorsx(t) andx(t − i) are in the same
direction, the angleθi becomes 0 orπ and the distancedi

should be 0. We expect the analyticity of the “distance”
aroundθ = 0 and putdi ≈ θi in this case. Secondly, when
the vectorsx(t) andx(t − i) are perpendicular (ai = 0), the
angleθi becomesπ/2 and the distancedi should be infinity.
Thusdi should be inversely proportional to cosθi. Finally,
the distance must always be a positive real number. Hence,
we define the distancedi between the nodesx(t) andx(t− i)
as

di ≡ |tanθi| . (5)

According to Eq. (1), the nodes contained in a model are
directly connected tox(t). We refer the distance calculated
from parameters in the model, Eq. (5), as the direct dis-
tance (DD). When we take into account time evolution of
dynamical system, a pair of nodes can be connected indi-
rectly via some other nodes and we can consider the sum
of all distances through the path as the indirect distance
(ID) between these two nodes. In a network we sometimes
find a path with a shorterID than theDD. In such a case,
we can consider that the indirect path that gives the short-
est length is the path on which the information is passed
through most effectively and that these two nodes are es-
sentially connected through the shortestID path. We treat
the collection of the paths that have the shortest length for
any given node pairs, namely the minimum spanning tree,
as the network of the system. The network constructed in
this way reveals the underlying hierarchical structure of the
linear model and enables us to know whether the influence
of a term may come through other terms. For more details
see [1].

1We understand that the “distance” introduced here depends on the
nature of the system, and other distances (e.g. inverse) may bejustified
in some situations. However, we consider that this distance has broad
range of applicability because it reflects the overall balance of the size of
parameters in the model. We note that the proposed method is independent
of the definition of the “distance”

(a) (b)

(c) (d)

Figure 1: (Colour online) The optimal path network of four
cases of the model, Eq. (6): (a) case (i)a1 = 0.722,a3 =

−0.391,a6 = 0.223, (b) case (ii)a1 = 0.713,a3 = −0.394,
a6 = 0.219, (c) case (iii)a1 = 0.711, a3 = −0.395, a6 =

0.213, and (d) case (iv)a1 = 0.712, a3 = −0.389, a6 =

0.212.

3. Classification of models

We demonstrate the application of our algorithm for
the classification of models. We take the following RAR
model,

x(t) = a1 x(t − 1)+ a3 x(t − 3)+ a6 x(t − 6), (6)

with the following four cases: (i)a1 = 0.722,a3 = −0.391,
a6 = 0.223, (ii) a1 = 0.713, a3 = −0.394, a6 = 0.219,
(iii) a1 = 0.711, a3 = −0.395, a6 = 0.213, and (iv)a1 =

0.712, a3 = −0.389, a6 = 0.212. These four cases are
not identical and not extremely different. By applying our
method, however, we can clearly see the network topolo-
gies built from these four models are quite different.

For the case (i) the coefficient vector is

~a = (0.722, −0.391, 0.223) , (7)

and using the~a we obtain the distance between the nodes,
the direct distances (DDs)

~d = (0.623, 1.933, 3.682) . (8)

The distance between nodes represents the magnitude of
influence from the other nodes. According to the model,
the nodesx(t − 1), x(t − 3) andx(t − 6) are directly con-
nected with the nodex(t). However, there are cases where
the distance of the directly connected path is not always the
shortest. The optimal (shortest) path fromx(t − 3) to x(t) is
the one viax(t−1). The direct distance (DD) from x(t−3) to
x(t) is 1.933, the indirect distance (ID) from x(t − 3) to x(t)
is the summation, 0.623+0.623+0.623= 1.870. TheID is
shorter than theDD. Hence, we conclude that the most sig-
nificant influence of the termx(t−3) to x(t) is not direct but
comes through the termx(t−1). On the other hand, the op-
timal (shortest) path fromx(t−6) to x(t) is DD. Figure 1(a)

- 187 -



shows the optimal path network of case (i) based on the re-
sult. Figure 1(a) also shows that the nodex(t) is directly
connected withx(t − 1) andx(t − 6), and the connection
from x(t − 3) is indirect viax(t − 1). This is an outcome of
the global structure of interrelation and hierarchy between
terms of the model, Eq. (6) with parameters of case (i), and
the interplay between the sizes of the parameters and the
network topology reveals the time structure. Other three
cases, (ii), (iii), and (iv), are analysed in the same way. The
direct distances of case (ii) is(0.632, 1.893, 3.720), the of
case (iii) is(0.631, 1.879, 3.819), and that of case (iv) is
(0.622, 1.910, 3.827). In Figure 1 (a)-(d), we show the
network structures corresponding to the four models, from
(i) to (iv). Note the distinctive topologies in these network
structures. It should be emphasized again that we cannot
extract this information by simply examining models with
parameters of four cases.

4. Summary

We applied our new network construction algorithm with
time structure based on the deterministic model structure
from given time series as an useful model classification
scheme. We showed that the networks constructed by our
method from indistinguishable models have distinctive net-
work topologies that can be easily classified.
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