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Abstract—The symbolization of time series by
means of ordinal patterns (i.e., permutations) have a
number of advantages. One of them is that ordinal
patterns are algebraic objects that, therefore, can be
further operated with. The transcript of two ordinal
patterns, which is the product of one of them by the
inverse of the other, is a realization of this possibility.
Transcripts have been already used to characterize the
synchronization of coupled nonlinear oscillators and,
more generally, to quantify the complexity of coupled
time series. In this paper we use transcripts to reduce
the dimensionality of the permutation conditional mu-
tual information.

1. Introduction

Ordinal time series analysis is a particular sort of
symbolic analysis whose “symbols” are ordinal pat-
terns of a given length L ≥ 2. This concept was in-
troduced by C. Bandt and B. Pompe in their seminal
paper [2], in which they also introduced permutation
entropy as a complexity measure of time series. Since
then, ordinal time series analysis has found a num-
ber of interesting applications in biomedical science,
physics, engineering, finance, statistics, etc.

One important peculiarity of this new tool in data
analysis is the fact that ordinal patterns of length L,
which can be identified with permutations of L ob-
jects, have a well-known mathematical structure. In-
deed, permutations build a (non-commutative) mul-
tiplicative group called the symmetric group of order
L. That is, the symbols themselves are amenable to
non-trivial mathematical operations. This property is
exploited by the concept of transcript.

Transcripts were introduced in [4] for characteriz-
ing the synchronization of two coupled, chaotic oscil-
lators. In [1] they were used to define two complexity
indices for coupled time series. In this communica-
tion we present a further application, this time to the
dimensional reduction of permutation conditional mu-
tual information.

2. Theoretical setting

2.1. Ordinal patterns

Suppose that {xt}∞t=t0 is a sequence whose ele-
ments (entries, symbols,...) xt belong to a set (state
space, alphabet,...) endowed with a total ordering
≤. In practice {xt} is obtained by sampling an ana-
log signal. Let T ≥ 1 be a delay time. We say
that a length-L, time delay block (vector, window,...)
vT,L(xt) = (xt, xt+T , ..., xt+(L−1)T ) defines the ordinal
(L-)pattern π = 〈π0, ..., πL−1〉 if

xt+π0T < xt+π1T < ... < xt+πL−1T , (1)

where in case xi = xj , we agree to set xi < xj if, say,
i < j. In nonlinear time series analysis, L is called the
embedding dimension.

Alternatively we also say that the block vT,L(xt) is
of type π, or that π is realized by vT,L(xt), and write
π = o(vT,L(xt)). Therefore, an ordinal L-pattern (or
ordinal patterns of length L) is nothing else but a per-
mutation of the integer numbers 0, 1,..., L−1 showing
the ranking (according to their size) of the elements
xt, xt+T , ..., xt+(L−1)T , where t is arbitrary and L ≥ 2.
Specifically, π = 〈π0, ..., πL−1〉 may be identified with
the permutation i 7→ πi, 0 ≤ i ≤ L − 1, or, in combi-
natorial notation,

〈π0, π1, ..., πL−1〉 =
(

0 1 · · · L− 1
π0 π1 · · · πL−1

)
. (2)

The set of ordinal L-patterns will be denoted by SL.
Needless to say, SL can be promoted via the identifica-
tion (2) to a group (the so-called symmetric group) of
order L! if equipped with the product of permutations,

π σ =
(

0 · · · L− 1
π0 · · · πL−1

)(
0 · · · L− 1
σ0 · · · σL−1

)

=
(

0 · · · L− 1
σπ0 · · · σπL−1

)

=
〈
σπ0 , ..., σπL−1

〉
, (3)

the inverse element being given by

π−1 = o(π0, ..., πL−1), (4)
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and the unity by the identity permutation,

id = 〈0, 1, ..., L− 1〉 . (5)

2.2. Transcripts

One way of exploiting the group-theoretical struc-
ture (3)-(5) of the ordinal patterns is the following.
Given α, β ∈ SL there always exists a unique τ =
τ(α, β) ∈ SL, called transcript from the source pat-
tern α to the target pattern β, such that

τα = β, (6)

where, according to (3), τα =
〈
ατ0 , ατ1 , ..., ατL−1

〉
.

When the source and target patterns are important
for the discussion, we generally write τα,β . It follows
from (6) that τβ,α = (τα,β)−1.

As the source pattern α and the target pattern
β vary over SL, their transcript varies according to
τ(α, β) = β ◦α−1. Note that different pairs (α, β) can
share the same transcription. As an example in S3,
τ(α, β) = 〈0, 2, 1〉 for

(α, β) = (012, 021), (021, 012), (120, 102),
(102, 120), (201, 210), (210, 201)

(angular parentheses omitted for brevity). More gen-
erally, given τ ∈ SL there exist L! pairs (α, β) ∈
SL × SL such that τ is the transcript from α to β.

Consider now two stationary time series {xt}, {yt}.
In turn, they provide two sequences of ordinal pat-
terns of arbitrary length L, {αt} and {βt}, respec-
tively. The stationarity of the time series guarantees
that the statistics of the different L! ordinal patterns
αt, βt does not depend on the discrete time t. This
being the case, we may omit the index t in the se-
quel. If, moreover, the time series are ergodic, then
the statistics of the corresponding ordinal patterns can
be obtained from a “typical” series just using sliding
windows of size L.

Let p1
L(α) be the probability for the source L-

pattern α to occur in {xt}, let p2
L(β) be the proba-

bility for the target L-pattern β to occur in {yt}, and
let pJ

L(α, β) be their joint probability. Then, the prob-
ability function of the transcripts, pT

L(τ), τ ∈ SL, can
be written as

pT
L(τ) =

∑

(α,β):βα−1=τ

pJ
L(α, β).

Furthermore, let

H(pJ
L) = −

∑

α,β∈SL

pJ
L(α, β) log pJ

L(α, β)

be the entropy of the joint probability function pJ
L, and

let
H(pT

L) = −
∑

τ∈SL

pT
L(τ) log pT

L(τ)

be the entropy of the corresponding transcript proba-
bility function pT

L.

Theorem 1 [1]. The following inequalities hold:

0 ≤ H(pJ
L)−H(pT

L) ≤ min{H(p1
L),H(p2

L)}. (7)

The result (7) can be generalized to N ≥ 2 coupled
time series [1]. In this case we write α1,..., αN for the
ordinal patterns obtained from the time series {x1

t},
..., {xN

t }, respectively, and τ1,2, ..., τN−1,N for the
transcripts τα1,α2 ,..., ταN−1,αN .

3. Coupling complexity index

Based on the concept of transcript, we proposed in
[1] two different indices to measure the complexity of
two interacting (deterministic or random) dynamical
systems, as observed at two data series {xt} and {yt}
output by them. For the information-theoretical ap-
plication envisaged in this communication, only one of
them, called C1(L) in [1] and C(α1, ..., αN ) here, will
be needed. The following are equivalent definitions [5]:

C(α1, ..., αN )
= min

1≤n≤N
H(αn)− (

H(α1, ..., αN )

−H(τ1,2, ..., τN−1,N )
)

= min
1≤n≤N

I(αn; τ1,2, ..., τN−1,N )

= H(τ1,2, ..., τN−1,N )
− max

1≤n≤N
H

(
α1, ..., α̂n, ..., αN

∣∣ αn) ,

where I(αn; τ1,2, ..., τN−1,N ) is the mutual informa-
tion between the univariate random ordinal pat-
tern αn and the multivariate random ordinal pattern
τ1,2, ..., τN−1,N , and H

(
α1, ..., α̂n, ..., αN

∣∣ αn) is the
conditional entropy of the multivariate random ordi-
nal pattern α1, ..., α̂n, ..., αN (α̂n means that the pat-
tern αn has been omitted) conditioned on the uni-
variate random ordinal pattern αn. It can be proved
that CL(α1, ..., αN ) is invariant under permutations
of its arguments [5]. Note for further reference that
C(α1, ..., αN ) = 0 implies

H(α1, ..., αN ) (8)
= min

1≤n≤N
H(αn) + H(τ1,2, ..., τN−1,N ).

The complexity index CL(α1, ..., αN ) has a number
of very interesting properties [5]. Here we state only
two properties that will be needed in the next section.

Property 1 [5]. Let N ≥ 3.
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(i) If αnmin is such that min1≤n≤N H(αn) =
H(αnmin), then

C(α1, ..., αN ) ≥ C(α1, ..., α̂k, ..., αN ) (9)

for all k 6= nmin.

(ii) If there are at least two random variables with
minimum entropy, then (9) holds for all k =
1, ..., N .

The following result is a corollary of Property 1 (ii).

Property 2. If C(α1, ..., αN ) = 0 and H(α1) = ... =
H(αN ), then all complexity indices C(αn1 , ..., αnk)
with 1 ≤ k ≤ N − 1 (i.e., with less than N variables)
vanish as well.

4. Dimensional reduction of the permutation
conditional mutual information

Given two random variables X1, X2, the mutual in-
formation between X1 and X2, I(X1, X2), is defined
as [3]

I(X1, X2) = H(X1) + H(X2)−H(X1, X2). (10)

From the point of view of information theory,
I(X1, X2) represents the amount of information
shared by the variables X1 and X2.

Conditional mutual information is analogously de-
fined by adding the condition to each term in (10). We
refer to the number of variables in the argument of I
(including the conditioning ones) as the dimension of
I.

We are going to show that the conditional mutual
information of random ordinal L-patterns, i.e., the
permutation conditional mutual information (PCMI)
can be calculated via transcripts with one conditioning
variable less, under some restrictions.

Theorem 1. If (i)

C(α1, α2, β1, ..., βM ) = 0, (11)

and (ii)

min{H(α1),H(α2)} ≥ min
1≤m≤M

H(βm), (12)

then in case M = 1,

I(α1, α2
∣∣β1

)
= I(τα1,β1 , τα2,β1), (13)

and in case M ≥ 2,

I(α1, α2
∣∣β1, ..., βM

)
(14)

= I
(
τα1,β1 , τα2,β1

∣∣τβ1,β2 , ..., τβM−1,βM

)
.

Proof. First of all, from the assumption (11)
and the monotonicity property (9), it follows

that, along with C(α1, α2, β1, ..., βM ), the complex-
ity indices C(α1, β1, ..., βM ), C(α2, β1, ..., βM ), and
C(β1, ..., βM ) vanish too.

Secondly, by the definition of mutual information,
Eqn. (10) with X1, X2 replaced by α1, α2, and the
chain rule of the joint entropy [3, Eqn. 2.14],

I(α1, α2
∣∣β1, ..., βM

)
(15)

=
2∑

n=1

H(αn
∣∣β1, ..., βM

)−H(α1, α2
∣∣β1, ..., βM

)

=
2∑

n=1

H(αn, β1, ..., βM )−H(α1, α2, β1, ..., βM )

−H(β1, ..., βM ).

Set Hβ = min1≤m≤M H(βm), and apply (8) to the
last three terms in (15) to transform them as follows.
First,

H(αn, β1, ..., βM ) (16)
= Hβ + H(ταn,β1 , τβ1,β2 , ..., τβM−1,βM ),

since min{H(αn), H(β1), ...,H(βM )} = Hβ for every
1 ≤ n ≤ N by the assumption (12).

By the same token,

H(α1, α2, β1, ..., βM )
= Hβ + H(τα1,α2 , τα2,β1 , τβ1,β2 , ..., τβM−1,βM )
= Hβ + H(τα1,β1 , τα2,β1 , τβ1,β2 , ..., τβM−1,βM ), (17)

since min{H(α1), ...,H(αN ),H(β1), ...,H(βM )} = Hβ

by the assumption (12). The second equality (17) fol-
lows from the fact that each variable in {τα1,α2 , τα2,β1}
can be determined from variables in {τα1,β1 , τα2,β1}
and the other way around, so the corresponding en-
tropies are the same.

Finally,

H(β1, ..., βM ) = Hβ + H(τβ1,β2 , ..., τβM−1,βM ) (18)

if M ≥ 2, or
H(β1) = Hβ (19)

if M = 1.
The dimensional reductions (13) and (14) follow now

upon replacing (16)-(19) in (15) . ¤
The dimension reduction by one unit of the PCMI

stated in Theorem 1 is very important in time series
analysis because the number of joint symbols grows
exponentially with M , while the length of real-world
time series is finite. Therefore, the expressions (13)-
(14) can avoid undersampling in some cases and, in
any case, they improve the statistical significance of
the estimations.

We are going to see in the next section that the con-
dition (11) can be usually met, at least approximately,
in time series analysis by adjusting the delay time T .
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5. Applications to transfer entropy

Let ξ1, ..., ξK random ordinal patterns obtained with
sliding windows of size L from K coupled time se-
ries {x1

t}, ..., {xK
t }. Then it happens often [6] that

C(ξ1, ..., ξN ) → 0 when the delay time T grows or, at
least, C(ξ1, ..., ξK) becomes very small as compared to
its maximum value. This fact allows to satisfy in prac-
tice the condition (11) with a high degree of accuracy.

Let us see next how the above observation applies
to one of the simplest instances of PCMI, namely, the
symbolic transfer entropy. Thus let ξ1, ξ2 be the ran-
dom ordinal L-patterns corresponding to the time se-
ries {x1

t}, {x2
t}, respectively, and likewise let ξ1

Λ be the
random ordinal L-pattern obtained as above from the
time series {x1

t+Λ}, Λ ≥ 1 being a time shift. There-
fore, H(ξ1

Λ) = H(ξ1).
The symbolic transfer entropy from system 2 to sys-

tem 1 is defined as [7]

TS
2→1 := I(ξ1

Λ, ξ2
∣∣ξ1

)
. (20)

Recall that if system 2 drives system 1, then TS
2→1 > 0

for some Λ. Theorem 1 with M = 1, α1 = ξ1
Λ, α2 = ξ2,

β1 = ξ1 yields the following result.

Corollary 1. [6] If

C(ξ1
Λ, ξ2, ξ1) = 0 (21)

and H(ξ2) ≥ H(ξ1), then

TS
2→1 = I(τξ1

Λ,ξ1 , τξ2,ξ1). (22)

Therefore, if the delay time T can be so chosen that
C(ξ1

Λ, ξ2, ξ1) ' 0 and H(ξ1) = H(ξ2) (because, for
instance, the time series {x1

t}, {x2
t} are different read-

outs of the same dynamics), then both assumptions of
Corollary 1 will be fulfilled.

The case TS
1→2 := I(ξ2

Λ, ξ1
∣∣ξ2

)
is dealt with analo-

gously: If
C(ξ2

Λ, ξ1, ξ2) = 0 (23)

and H(ξ1) ≥ H(ξ2), then

TS
1→2 = I(τξ2

Λ,ξ2 , τξ1,ξ2). (24)

6. Information direction using transcripts

In the last section we have illustrated with the trans-
fer entropy how transcripts, together with the condi-
tions (21) or (23), can make possible in practice the
reduction of dimensionality of PCMI proved in Theo-
rem 1, thereby enhancing the statistical quality of the
estimation.

Another by-product of Theorem 1 is the justifica-
tion for using the transcript mutual informations (22)
and (24) as information direction indicators between

two coupled time series, independently of whether the
conditions (21) and (23) are fulfilled. In fact, the anal-
ysis of numerical and real time series supports this ap-
proach [6].

We conclude that one further advantage of tran-
scripts as compared to ordinal patterns when study-
ing coupled dynamical system is the possibility of us-
ing mutual information to ascertain the direction of
the coupling. The ultimate reason for this magic is
that transcripts themselves carry information about
the coupling.
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