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Abstract—In this study, we analyze the stability of am-
plitude death induced by a partial time-varying delay con-
nection. This connection consists of time-invariant delay
connections and time-varying delay connections. A linear
stability analysis reveals that a partial time-varying delay
connection is useful for death induction.

1. Introduction

There has been a growing interest in nonlinear phenom-
ena in coupled oscillators [1]. Amplitude death, which is a
diffusive-coupling induced stabilization of unstable steady
states in coupled oscillators, has been studied for almost
two decades [2]. It was known that amplitude death is
not induced in coupled identical oscillators [3]. However,
Reddy el al. shows that amplitude death can be induced in
coupled identical oscillators if the coupling contains a time
delay [4]. The delay-induced death has attracted a great at-
tention in nonlinear science and has been intensively stud-
ied not only analytically but also experimentally [5–12].
Amplitude death has a potential to suppress an unneces-

sary self-excited oscillation in engineering systems [6, 7].
However, if the time delay in coupling is long compared
with the oscillators period, death cannot occur [4]. Thus,
it is impossible to induce amplitude death in the follow-
ing situations: oscillators apart from each other; oscillators
have high frequency. A distributed delay connection [8]
and a multiple delay connection [9] are proposed to over-
come the above problem. Unfortunately, they have disad-
vantages: the former is difficult to be implemented in real
systems and the latter takes high cost.
Recently, Konishi et al. proposed a time-varying delay

connection for a pair of limit cycle oscillators [10]. Since
the time-varying delay connection would be easy to be im-
plemented and would not be costly, this connection must be
one of the strong candidates for overcoming the disadvan-
tages. There has been an experimental verification of the
time-varying delay connection in an electric circuit [13].
Furthermore, we have shown that this connection can be
applied to network oscillators [14]. However, for the net-
work oscillators, all the time delays have to be varied with
high frequency. We can easily imagine that this is a difficult
task for a large-scale network consisting of a huge number
of oscillators.

Figure 1: Sketch of network oscillators coupled by the par-
tial time-varying delay connection

The present paper analyzes the stability of amplitude
death induced by a partial time-varying delay connection.
This connection consists of time-invariant delay connec-
tions and time-varying delay connections. It is obviously
easier to implement the partial time-varying delay connec-
tion than the conventional time-varying delay connection.
A linear stability analysis reveals an effectiveness of the
partial time-varying delay connection.

2. Network oscillators

Let us consider N identical oscillators (see Fig. 1),

Ż j(t) =
{
μ + iω − |Zj(t)|2

}
Zj(t)+U j(t), ( j = 1, . . . ,N), (1)

where Zj(t) ∈ C is the state variable of the j-th oscilla-
tor. The parameters μ and ω represent the instability of
the fixed point and the frequency of the oscillator, respec-
tively. Here, i is denoted as i :=

√−1. The coupling signal
U j(t) ∈ C is given by

U j(t) = k

⎧⎪⎪⎨⎪⎪⎩
1
d j

⎛⎜⎜⎜⎜⎜⎝
N∑

l=1

(
v jlZl,τ(t) + wjlZl,τ0

)⎞⎟⎟⎟⎟⎟⎠ − Zj(t)

⎫⎪⎪⎬⎪⎪⎭ , (2)

where Zl,τ(t) := Zl(t − τ(t)) and Zl,τ0 := Zl(t − τ0) are the
time-varying delayed variable and the time-invariant de-
layed variable, respectively. v jl and wjl govern the network
topology as follows: if the j-th oscillator is connected to
the l-th oscillator by a time-varying (time-invariant) delay
connection, then v jl = vl j = 1 (wjl = wl j = 1), otherwise
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v jl = vl j = 0 (wjl = wl j = 0). The degree of the j-th os-
cillator, that is the number of oscillators connected to the
j-th oscillator, is denoted by d j :=

∑N
l=1(v jl + wjl). The

time-varying delay τ(t) varies around a nominal delay time
τ0 > 0 with amplitude δ > 0,

τ(t) := τ0 + δ f (Ωt),

where Ω is the frequency of variation. f (x) is the periodic
sawtooth function,

f (x) :=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
+
2
π

(
x − π

2
− 2mπ

)
if x ∈ [2mπ, (2m + 1)π)

−2
π

(
x − 3π

2
− 2mπ

)
if x ∈ [(2m + 1)π, 2(m + 1)π)

,

m = 0, 1, 2, . . . .

Oscillators (1) with connection (2) have the homoge-
neous steady state,[

Z∗1 ,Z
∗
2 , . . . ,Z

∗
N
]T
= [0, 0, . . . , 0]T. (3)

The dynamics of oscillators (1) with connection (2) around
steady state (3) is given by

ż j(t) = (μ + iω)z j(t) + u j(t), (4)

where z j(t) := Zj(t) − Z∗j is the variation from steady state
(3) and the variation of the coupling signal is given by

u j(t) := k

⎧⎪⎪⎨⎪⎪⎩
1
d j

⎛⎜⎜⎜⎜⎜⎝
N∑

l=1

(
v jlzl,τ(t) + wjlzl,τ0

)⎞⎟⎟⎟⎟⎟⎠ − z j(t)

⎫⎪⎪⎬⎪⎪⎭ .
Equation (4) can be written as

Ẋ(t) = (IN ⊗ As) X(t)+
k(D−1 ⊗ I2) {(V ⊗ I2)Xτ(t) + (W ⊗ I2)Xτ0 } , (5)

where

X(t) :=
[
Re[z1(t)], Im[z1(t)], · · · ,Re[zN(t)], Im[zN(t)]

]T
,

As := A − kI2, A :=
[
μ −ω
ω μ

]
,

D := diag(d1, d2, . . . , dN).

IN denotes N-dimensional unit matrix. The elements of V
and W are given by {V} jl = v jl and {W} jl = wjl, respec-
tively.

3. Stability analysis

For large Ω, the stability of the time-varying system (5)
is equivalent to that of the following time-invariant sys-
tem [15]:

Ẋ(t) = (IN ⊗ As) X(t)+

k(D−1 ⊗ I2)
{
(V ⊗ I2)
2δ

∫ t−τ0+δ

t−τ0−δ
X(θ)dθ + (W ⊗ I2)Xτ0

}
.

(6)

The stability of the time-invariant system (6) is governed
by the characteristic equation,

G(s) = det
[
sI2N − (IN ⊗ As)−

k(D−1 ⊗ I2) {(V ⊗ I2)e−sτ0H(sδ) + (W ⊗ I2)e−sτ0 }]
= det

[
sI2N − (IN ⊗ As) − k (M ⊗ I2) e−sτ0

]
= 0, (7)

where

M := D−1(VH(sδ) +W), H(x) :=

⎧⎪⎪⎨⎪⎪⎩
sinh x

x if x � 0
1 if x = 0

.

The matrix M can be diagonalized1 as T−1MT =

diag(ρ1(s), ρ2(s), . . . , ρN(s)) by a matrix T, where
ρp(s) (p = 1, . . . ,N) are the eigenvalues2 of M. Thus,
characteristic equation (7) can be rewritten as

G(s) = det
[
sI2N − (IN ⊗ As)

− k
{
diag (ρ1(s), . . . , ρN(s)) ⊗ I2} e−sτ0

]

=

N∏
p=1

g
(
s, ρp(s)

)
= 0,

where

g (s, ρ) :=
{
s − ω + k

(
1 − ρe−sτ0)}2 + ω2. (8)

The steady state (3) is stable if and only if all the roots of
g
(
s, ρp(s)

)
= 0 lie in the open left-half complex plane for

every ρp(s) (p = 1, 2, . . . ,N).
Now, we derive the death region on the connection pa-

rameter space. Substituting s = iλI (λI ∈ R) into Eq. (8),
its real and imaginary parts are described by

Re
[
g (iλI , ρ(iλI))

]
= −μ + k − kρ(iλI) cos(λIτ0) = 0,

Im
[
g (iλI , ρ(iλI))

]
= λI − ω + kρ(iλI) sin(λIτ0) = 0. (9)

From sin2(x) + cos2(x) = 1, we obtain(
1 − ρ(iλI)2

)
k2 − 2μk + μ2 + (ω − λI)2 = 0, (10)

which does not depend on τ0. The solution k(λI) of Eq. (10)
is calculated as

k (λI) =
μ ± √D (λI)
1 − ρ(iλI)2

,

D (λI) := ρ(iλI)2μ2 + (ρ(iλI) − 1) (ω − λI)2. (11)

There exists two solutions k(λI) for D (λI) > 0. Moreover,
from Eq. (9), we have

τ0(λI , n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(τ̄0(λI) + 2nπ)/λI if k(λI )−μ

k(λI )ρ(iλI ) > 0

(τ̄0(λI) + (2n + 1)π)/λI if k(λI )−μ
k(λI )ρ(iλI ) < 0

,

(12)
1This is because M and real symmetric matrix M̂ := D−1/2(VH(sδ) +

W)D−1/2 are similar and their eigenvalues ρ(s) are real values.
2The elements of M include H(sδ), then its eigenvalues ρ(s) are func-

tions of s.
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Figure 2: Network oscillators (N = 8)
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Figure 3: Stability region with one time-varying delay con-
nection. The symbol� denotes the time-varying delay con-
nection.

where

τ̄0(λI) := tan−1
(
ω − λI

k(λI) − μ
)
, n ∈ Z.

The marginal stability curve can be derived on k− τ0 space
by using k(λI) in Eq. (11) and τ0(λI , n) in Eq. (12) for λI
in the range D(λI) > 0. Furthermore, the sign of the real
part of ds/dk determines the direction of roots crossing the
imaginary axis:

Re
[
ds
dk

]
s=iλI

k=k(λI )

= Re

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 − ρ(iλI)e−iλIτ0(λI ,n)

k(λI)e−iλIτ0(λI ,n)
(
dρ
ds

∣∣∣∣∣
s=iλI

− ρ(iλI)τ0(λI , n)
)
− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

When the connection parameter set (k, τ0) crosses the
marginal stability curve with increasing k, the positive
(negative) value of Eq. (13) means that a root crosses the
imaginary axis from left to right (right to left).

4. Numerical example

Let us consider eight oscillators as illustrated in Fig. 2.
The 4-th and 8-th oscillators have high degree d4 = d8 = 4
and the others have low degree d1 = d2 = d3 = d5 = d6 =

d7 = 1. Let us define the high-degree (low-degree) oscil-
lators as hub (non-hub) oscillators. The parameters of all
the oscillators are fixed at μ = 0.5 and ω = π, and the de-
lay amplitude is set to δ = 1. In order to investigate the
influence of the number of the time-varying delay connec-
tions and their configuration on amplitude death, we shall
consider the following situations: one (two) time delay(s)
is (are) varied and the others are maintained constant.

4.1. One time-varying delay connection

This subsection considers the situation with one time-
varying delay connection and with six time-invariant delay
connections. The symbol i ∼ j denotes that the i-th oscil-
lator is connected to the j-th oscillator by the time-varying
delay connection. Let us consider two cases: (i) non-hub
∼ hub connection, (ii) hub ∼ hub connection (i.e. 4 ∼ 8).
Without loss of generality, we employ 1 ∼ 4 for case (i).
The stability regions for cases (i) and (ii) are shown in

Figs. 3(a) and 3(b), respectively. The marginal stability
curves denote the solution of g(iλI , ρ(iλI)) = 0. When
the connection parameter set (k, τ0) crosses the bold (thin)
curve with increasing k, a root of g(s, ρ(s)) = 0 crosses
the imaginary axis from right to left (left to right). The
shaded area is the stability region where all the roots of
g(s, ρ(s)) = 0 lie in the open left-half complex plane.
As shown in Fig. 3(a), there is the small stability region.

This fact implies that we cannot induce amplitude death
for long delay time τ0. On the contrary, in Fig. 3(b), there
is the large stability region and exist no curves in the range
k ∈ (4.545, 7.011) on the k−τ0 space. We see no upper limit
of τ0; thus, amplitude death can be induced for arbitrarily
long nominal delay time τ0 within the range. From these
results, for one time-varying delay connection, we should
vary the time delay in the connection between the two hub
oscillators to obtain a large stability region.

4.2. Two time-varying delay connections

Nowwe consider the situation with two time-varying de-
lay connections and with five time-invariant delay connec-
tions. Let us focus on three cases: (i) two non-hub ∼ hub
connections in the left or right side (Fig. 4(a)), (ii) non-hub
∼ hub connection and hub ∼ hub connection (Fig. 4(b)),
(iii) non-hub ∼ hub connection in both sides (Fig. 4(c)).
Without loss of generality, we employ 1 ∼ 4 and 2 ∼ 4 for
case (i), 1 ∼ 4 and 4 ∼ 8 for case (ii), and 1 ∼ 4 and 5 ∼ 8
for case (iii). Figures 4(a), 4(b), and 4(c) show the stability
regions for cases (i), (ii), (iii), respectively. All the stability
regions in Fig. 4 have the ranges k where amplitude death
is induced for arbitrarily long nominal delay time τ0. It
can be seen that the region in Fig. 4(a) is smaller than that
in Fig. 4(b). From this result, one may conclude that the
time-varying delay connection between the two hub oscil-
lators plays an important role in expanding the region as is
the case with Fig. 3. This conclusion is not always true. As
shown in Fig. 4(c), we have the region nearly as large as
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Figure 4: Stability region with two time-varying delay con-
nections. The symbol � denotes the time-varying delay
connection.
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Figure 5: Time-series data of the 1st oscillator at point A
in Fig. 4(c)

that in Fig. 4(b) even though the delay time in connection
between the two hub oscillators is maintained constant.
Figure 5 shows the time-series data of the first oscillator

at point A (k, τ0) = (5, 2.5) in Fig. 4(c). The frequency
variationΩ is set to a large valueΩ = 10π. Eight oscillators
are coupled at t = 30. After coupling, the state variable
Re[Z1(t)] converges on the fixed point.

5. Conclusion

This study analyzed the stability of amplitude death in-
duced by the partial time-varying delay connection. This
connection consists of time-invariant delay connections
and time-varying delay connections. Our results suggest
that the partial time-varying delay connection is useful for
death induction. The analytical results were confirmed by
numerical simulations.
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