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Abstract—We theoretically and numerically studied en-
trainment of two uncoupled nonidentical limit cycle os-
cillators subjected to a common external white Gaussian
noise. We have found that a novel type of entrainment oc-
curs in a general class of oscillators. In this entrainment,
the mean frequency difference of the two oscillators re-
mains the same as their natural frequency difference but
their phases come to be locked with each other for almost
all the time as the noise intensity increases. This absence
of frequency locking is a fundamental property of noise in-
duced entrainment.

1. Introduction

Entrainment is a key mechanism for the emergence of
order and coherence in a variety of physical systems con-
sisting of oscillatory elements. It is important to explore
the possible types of entrainments and clarify their funda-
mental properties. It is well known that a common external
periodic input may lead to entrainment between two inde-
pendent and slightly detuned oscillators when their natural
frequencies are in resonance with the input frequency (e.g.,
see [1]). A fundamental property of this resonant entrain-
ment is that both frequencies and phases of the two oscilla-
tors lock with each other.

Recent physical and numerical experiments have shown
that not only a periodic but also a noise-like signal can give
rise to entrainment between two independent oscillators
[2, 3, 4, 5]. Experimental evidence for this phenomenon
has been found for several systems as diverse as neuronal
networks [2], ecological systems [3], and lasers [4]. The
entrainment by a noise-like signal is a nonresonant one in
the sense that there is no resonance relation between the
oscillator and the noise. Therefore, we call it nonreso-
nant entrainment. It is essential for fully understanding the
emergence of order in the real world to clarify fundamental
properties of this nonresonant entrainment.

The nonresonant entrainment between two independent
oscillators with an identical natural frequency has been
studied [5]. It has been shown that a stable phase lock-
ing is achieved and the two oscillators have the same mean
frequency when a weak Gaussian noise is applied. In this

sense, the behavior is similar to that for periodic input, and
seems to support the view there is no fundamental differ-
ence between resonant and nonresonant entrainment.

In real systems, two oscillators are in general slightly de-
tuned. Thus, it is crucial to consider the case of detuned os-
cillators. We considered two independent and slightly de-
tuned limit cycle oscillators subjected to a common white
Gaussian noise and have clarified fundamental properties
of nonresonant entrainment, which are quite different from
those of resonant entrainment. Our theoretical results apply
to a general class of limit cycle oscillators.

2. Theory

Let Xi ∈ RN be a state variable vector and consider the
equation

Ẋi = F(Xi) + δFi(Xi) + G(Xi)η(t), i = 1, 2, (1)

where F is an unperturbed vector field, δF1 and δF2 are
small deviations from it, G ∈ RN is a vector function, and
η(t) is the white Gaussian noise such that 〈η(t)〉 = 0 and
〈η(t)η(s)〉 = 2D δ(t− s), where 〈· · ·〉 denotes averaging over
the realizations of η and δ is Dirac’s delta function. We call
the constant D > 0 the noise intensity. The noise-free un-
perturbed system Ẋ = F(X) is assumed to have a limit
cycle with a frequency ω. We employ the Stratonovich
interpretation for the stochastic differential equation (1).
This interpretation allows us to apply the phase reduction
method to Eq. (1), which assumes the conventional vari-
able transformations in differential equations.

If we regard the common noise as a weak perturbation to
the deterministic oscillators and apply the phase reduction
method to Eq. (1), we obtain the equation for the phase
variable as follows:

φ̇i = ω + δωi(φi) + Z(φi)η(t), i = 1, 2, (2)

where ω is the frequency of the unperturbed oscillator, δωi

is the frequency variation due to δFi, Z is defined by Z(φ) =
G(X0(φ)) ·

(

gradXφ|X=X0(φ)

)

, where φ is the phase variable

defined by the unperturbed system Ẋ = F(X) and X0(φ)
is its limit cycle solution. By definition, Z(φ) is a periodic
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function, i.e., Z(φ) = Z(φ + 2π). We assume that Z is three
times continuously differentiable and not a constant. It is
also assumed that 0 < D/ω ¿ 1 to ensure the validity of
the phase reduction.

In order to derive the average equation for φi, we trans-
late Eq. (2) into the equivalent Ito stochastic differential
equation:

φ̇i = ω + δωi(φi) + DZ(φi)Z
′(φi) + Z(φi)η(t), (3)

where the dash denotes differentiation with respect to φi.
In the Ito equation, unlike in Stratonovich formulation, the
correlation between φi and η vanishes. If we subtract Eq.
(3) for φ2 from that for φ1 and take the ensemble average,
then we have the average equation

d
dt
〈φ1 − φ2〉 = 〈δω1(φ1)〉 − 〈δω2(φ2)〉

+ D
{

〈Z(φ1)Z′(φ1)〉 − 〈Z(φ2)Z′(φ2)〉
}

, (4)

where we used the fact 〈Z(φi)η(t)〉 = 〈Z(φi)〉〈η(t)〉 = 0.
Each ensemble average on the right hand side can be eval-
uated by using the steady probability distribution Pi(φi) for
φi, which can be obtained from the Fokker-Planck equa-

tion for Eq. (3): i.e., 〈A(φi)〉 =
∫ 2π

0
A(φ)Pi(φ)dφ, where

A represents a function of φi. The distribution Pi can
be obtained as Pi(φi) = 1/2π + O(σi,D/ω), where σi =

max0≤φ<2π |δωi(φ)/ω|. Since δFi is small, σi is a small pa-
rameter. Therefore, Pi can be approximated by Pi ' 1/2π

for small D/ω and we have 〈δωi(φi)〉 '
∫ 2π

0
δωi(φ)/2π dφ ≡

δωi and 〈Z(φi)Z′(φi)〉 '
∫ 2π

0
Z(φ)Z′(φ)/2π dφ = 0. If we

substitute these results into Eq. (4), we have

d
dt
〈φ1 − φ2〉 = δω1 − δω2. (5)

Since in general δω1 − δω2 , 0, this equation indicates that
the average phase difference increases or decreases in pro-
portion to the time t. The two oscillators have different
mean frequencies even when a common white Gaussian
noise is applied, i.e., d〈φ1〉/dt , d〈φ2〉/dt. Equation (5)
shows that the mean frequency difference is independent of
the noise intensity and it equals the natural frequency dif-
ference. Intuitively, this result is natural because the white
noise has a uniform power spectrum and does not have a
characteristic frequency, which could entrain the oscillator
frequencies.

Let θ and ψ be defined by θ = φ1 − φ2 and ψ =

φ1 + φ2 − 2ωt. The variable θ measures the phase differ-
ence between the two oscillators. For small D and δωi,
it is expected that φi still has a mean frequency close to
ω. Therefore, θ and ψ can be regarded as slow variables.
If we change the independent variables form (t, φ1, φ2) to
(t, θ, ψ) and perform the time-averaging with respect to t,
we can obtain the Fokker-Planck equation corresponding
to Eq. (2) as follows:

∂Q
∂t

= −( δω1 + δω2 )
∂Q
∂ψ
− ( δω1 − δω2 )

∂Q
∂θ

+D
∂2

∂ψ2
[ g(θ)Q ] + D

∂2

∂θ2
[ h(θ)Q ] (6)

where Q(t, θ, ψ) is the joint probability distribution. The
functions g and h are given by g(θ) = 2{Γ(0) + Γ(θ)}
and h(θ) = 2{Γ(0) − Γ(θ)}, where Γ is defined by Γ(θ) =

(2π)−1
∫ 2π

0
Z(φ)Z(φ + θ)dφ. Hereafter we assume the case

of δω1 > δω2 without loss of generality.
It is in general possible that Z has a period smaller than

2π. Since Z is not a constant function, we suppose that
Z(φ) = Z(φ + 2π/n), where n is a positive integer. It can be
shown that h(θ) ≥ 0 for any θ ∈ [0, 2π). The zero points sm

of h are given by sm = 2πm/n, m = 0, 1, . . . , n − 1, where
s0 = 0. Equation (6) has the steady solution Qs(θ) such that
it is a continuous function of θ only and satisfies the two

conditions (i) Qs(θ) = Qs(θ + 2π) and (ii)
∫ 2π

0
Qs(θ)dθ = 1.

In each interval (sm, sm+1), the solution Qs can be obtained
as follows:

Qs(θ) =
ε

2πh(θ)

∫ sm+1

θ

exp

[

−ε
∫ x

θ

1
h(y)

dy

]

dx, (7)

where ε = (δω1 − δω2)/D > 0. The right hand side of Eq.
(7) has singularities at the zero points of h. The value of Qs

for each sm is given by Qs(sm) = limθ→sm Qs(θ). Assume
that θ ∈ (sm, sm+1), i.e., θ is an arbitrary regular point. It
can be shown that limε→0 Qs(θ) = 0 holds due to the factor
ε in the numerator. This implies that the probability has to
concentrates at the singular points sm, m = 0, 1, . . . , n − 1
because Qs satisfies the condition (ii). Thus, Qs in the limit
ε→ 0 is given by

Qs(θ) =
1
n

n−1
∑

m=0

δ(θ − sm), (8)

where δ is Dirac’s delta function. For small positive ε, the
distribution Qs has narrow and sharp peaks at θ = sm, m =

0, 1, . . . , n − 1 while Qs is close to zero in the regions other
than the neighborhoods of these singular points. The peaks
of Qs become narrower and higher as ε approaches zero.
Equation (8) indicates that multiple peaks exist if Z has a
period smaller than 2π, i.e., n > 1.

The above profile of Qs clearly shows that the phase
locking states, where θ ' sm (mod 2π), are achieved for
a large fraction of time during the time evolution when the
noise intensity D is relatively large with respect to the natu-
ral frequency difference δω1−δω2: i.e., the nonresonant en-
trainment occurs. Let δ be a small positive constant and Uδ

be the δ-neighborhood defined by Uδ = ∪n−1
m=0(sm−δ, sm+δ),

where mod 2π is taken for s0 − δ. We identify the phase
locking state by the condition θ ∈ Uδ. As shown by Eq. (5),
the present entrainment is not characterized by coincidence
of the mean frequencies of the two oscillators. Therefore,
as a measure for the entrainment, we introduce the phase
locking time ratio µ defined by

µ = lim
T→∞

TL

T
, (9)
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where TL represents the total time length for which θ ∈
Uδ happens during the period T . This ratio can also be
expressed in terms of Qs by µ =

∫

Uδ
Qs(θ)dθ, where the

integral is taken over the set Uδ. Equation (8) shows that
µ→ 1 in the limit ε = (δω1 − δω2)/D→ 0.

A phase locking state cannot continue for the infinite
time but phase slips have to happen during the periods such
that θ < Uδ because the two mean frequencies d〈φ1〉/dt and
d〈φ2〉/dt are different. Equation (5) indicates that the mean
frequency difference is given by the constant δω1 − δω2.
This implies that the average number of phase slips, which
happen in a unit time interval, does not become small but
remains constant even for relatively large D compared with
δω1 − δω2. In other words, the average interslip interval
remains constant. On the other hand, the probability for
θ < Uδ decreases and converges to zero as D increases:
i.e., the phases come to be locked for almost all the time.
These two facts imply that a single phase slip completes
more rapidly: i.e., the time needed for one phase slip de-
creases and converges to zero as D increases. We empha-
size that the above mentioned behavior is a remarkable fea-
ture of the nonresonant entrainment. This behavior is very
different from that of resonant entrainment by a periodic
signal, where the average interslip interval diverges and the
mean frequencies become identical as the signal intensity
approaches the critical value for entrainment.

3. Numerical examples

In order to demonstrate the above analytical results, we
show numerical results for an example described by the
Stratonovich stochastic differential equations

φ̇ j = ω j + sin(φ j) η(t), j = 1, 2, (10)

where ω j, j = 1, 2 are slightly different constants.
Figure 1(a) shows the mean frequency difference ∆ω =

d〈φ1〉/dt − d〈φ2〉/dt plotted as a function of D, where ω1

is fixed to unity and five different values of ω2 are em-
ployed. The mean frequency difference ∆ω is not zero
except for the case ω1 = ω2 = 1. It is clearly shown
that ∆ω is constant and independent of D. This coin-
cides with the analytical result of Eq. (5) . The steady
distribution P j(φ j) is approximately given by P j(φ j) '
(1/2π)[ 1+ (D/2ω j) sin(2φ j) ] for this example. This shows
that the assumption P j(φ j) ' 1/2π is reasonable for small
D used in the numerical calculations. Thus, the result of
Eq. (5) holds.

The time evolution of the phase difference θ = φ1 − φ2

is shown for three different values of D in Fig. 1(b), where
ω1 = 1 and ω2 = 0.98. These results clearly show that the
phases are locked near θ ' 2πn, n ∈ Z and the phase slips
occur intermittently. It should be noted that the time needed
for a single phase slip becomes smaller as D increases. This
observation is in agreement with the analytical result.

The probability distribution Qs(θ) is shown in Fig. 1(c)
for three different values of D, where ω1 = 1 and ω2 =
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Figure 1: Entrainment in phase models with Z = sin(φ):
(a) mean frequency difference ∆ω vs. D, (b) time evolution
of phase difference θ = φ1 − φ2, and (c) probability distri-
bution Qs(θ) for D = 0.02 (×), 0.05 (•), and 0.1 (◦), where
analytical results are shown by solid line. The inset shows
µ plotted against D. In (b) and (c), ω1 = 1 and ω2 = 0.98.

0.98. The analytical results of Eq. (7) are also shown for
the corresponding values of ε = (ω1 − ω2)/D. The numer-
ical results are in good agreement with the analytical one.
It is clearly seen that Qs has a sharp peak near θ = 0 for
large D or small ε. The peak in Qs becomes narrower and
its position becomes closer to θ = 0 as D increases. It is
also seen that the peak is not centered at θ = 0 but shifted
to the positive direction: i.e., the phase φ1 of the larger nat-
ural frequency oscillator is kept advanced with respect to
φ2 even in the phase locking state. The inset of Fig. 1(c)
shows that the phase locking time ratio µ monotonically
increases and approaches unity with increasing D. Figure
1(c) clearly demonstrates that the phases are locked for a
larger fraction of the time as D increases.

In order to validate the theory based on the phase reduc-
tion method, we carried out numerical experiments for the
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Figure 2: Entrainment in SL oscillators. Prob-
ability distribution Qs(θ) is shown for D =

0.02 (×), 0.05 (•), and 0.1 (◦). Analytical results are
also shown by solid line. The inset shows ∆ω vs. D.
Parameters are δω1 = 0 and δω2 = −0.02.

Stuart-Landau (SL) oscillator

ψ̇ j = (1 + ic j)ψ j − |ψ j|2ψ j − η(t), j = 1, 2, (11)

where ψ j ∈ C and c j = 1 + δω j is a real constant. This
is reduced to the phase model φ̇ j = 1 + δω j + sin(φ j)η(t),
where φ j is the appropriately defined phase variable.

In Fig. 2, the numerically obtained distribution Qs(θ)
is shown for three different values of D, where δω1 = 0
and δω2 = −0.02. The analytical results obtained from
the corresponding phase model are also shown for the cor-
responding values of ε = (δω1 − δω2)/D. A sharp peak
of Qs appears near θ = 0. It becomes narrower and ap-
proaches θ = 0 as D increases. Agreement between the
numerical and analytical results is excellent, especially in
small D region, where the phase reduction method gives a
good approximation. The inset shows the mean frequency
difference ∆ω = d〈φ1〉/dt − d〈φ2〉/dt plotted as a function
of D for the same δω1 and δω2. It is clearly shown that
∆ω does not depend on D and its constant value is given by
∆ω = δω1−δω2. This behavior also agrees with the theory.
The agreements in the behaviors of Qs and ∆ω validate the
theory based on the phase model.

4. Emergence of macroscopic rhythm

Nonresonant entrainment can induce macroscopic
rhythm in an ensemble of detuned oscillators. To demon-
strate this, consider an ensemble of N oscillators given by
Eq. (10), in which the natural frequencies ω j distribute
according to the Gaussian distribution P(ω) = exp[−(ω −
ω0)2/2σ2]/

√
2πσ. We define the order parameter M by

M = (1/N)
∑N

j=1 exp[iφ j] to measure the intensity of col-
lective motion: if the phases evolve collectively, |M| ap-
proaches unity. Figure 3 shows |M| plotted against D,
where ω0 = 1 and σ = 0.005, 0.02, and 0.05. It shows that
|M| increases and becomes close to unity as D increases,
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Figure 3: Order parameter |M| vs. D for ω0 = 1 and σ =

0.005 (◦), 0.02 (•), and 0.05 (×).

indicating the emergence of collective motion. It was ob-
served that M oscillates almost periodically for values of
D used in Fig. 3. Thus, a common noise can generate a
macroscopic rhythm via nonresonant entrainment in an en-
semble of detuned oscillators.

5. Conclusions

In conclusion, we have revealed the nature of nonreso-
nant entrainment, considering two detuned limit cycle os-
cillators subjected to a common external white Gaussian
noise. We theoretically elucidated this phenomenon by us-
ing a phase model and presented numerical evidence for
a particular phase model and the SL oscillator. We found
that the mean frequency difference of the two oscillators re-
mains identical with their natural frequency difference but
their phases come to be locked with each other for almost
all the time as the noise intensity increases. This is a fun-
damental property of nonresonant entrainment.
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