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Abstract—In this paper we consider reducing logic
gates used to build Sigma-Delta (SD) domain mul-
tipliers. The reduction brings not only compactness
and low cost to every SD domain processors but also
high precision even to middle scale processors. In
inherently noisy SD domain, it is very important to
attain highly precise multiplication. Ordinary mul-
tiplication procedure in SD domain is summation of
sub-products. There exist integers that products of
two integers ∈{1, 2, · · · , k} never take in {1, 2, · · · , k2}.
By decreasing the redundancy, it is possible to design
SD domain multipliers with small adders for summing
sub-products. The designed multipliers can be built of
about a half of logic gates required to build the pre-
ceding multipliers.

1. Introduction

Sigma-Delta (SD) modulation is a popular tech-
nique for narrow band analog-to-digital and digital-
to-analog conversions [1]. Recently direct processing
of SD modulated signals has been proposed [2], which
we call SD domain signal processing. The processing
scheme has the following advantages:

(i) Decimation filters to convert SD modulated signals
into Nyquist-rate multi-bit signals are not neces-
sary.

(ii) Circuits operating on SD modulated signals are
simple and connected to one another by a few
signal lines.

(iii) Precision of processing increases in the polyno-
mial order of oversampling ratio (OSR).

However, multipliers proposed for SD domain process-
ing do not possess the properties (ii) and (iii). The
multipliers are not always small in circuit scale. Their
precision increases in proportion to OSR like Nyquist-
rate arithmetic circuits.

In this paper we consider reducing logic gates used
to build Sigma-Delta (SD) domain multipliers. The
reduction brings not only compactness and low cost
to every SD domain processors but also high precision
even to middle scale processors. In inherently noisy SD
domain, it is very important to accomplish highly pre-
cise multiplication. Ordinary multiplication procedure

in SD domain is summation of sub-products There ex-
ist integers that products of two integers ∈{1, 2, · · · , k}
never take in {1, 2, · · · , k2}. By decreasing the redun-
dancy, it seems possible to design SD domain multipli-
ers with small adders for summing sub-products. This
paper presents an attempt to reduce logic gates of the
multipliers according to this strategy.

In this paper SD modulated signals to be multiplied
are assumed to be outputs of first-order SD modulators
with a one-bit quantizer.

2. Sub-multiplier

We first review the preceding SD domain multipliers
[2]. Let two SD modulated signals be denoted by x(n)
and y(n)∈{−1, +1}, n: time index. Direct multiplica-
tion of x(n) and y(n) spreads their high frequency SD
modulation noise over entire frequency band from DC
to fs/2, fs: sampling frequency. Thus, signal com-
ponents of product x(n)y(n) are contaminated by the
spread noise. This problem is solved by eliminating
SD modulation noise before multiplication, that is by
computing the following expression:(

N−1∑
i=0

x(n − i)

)(
N−1∑
j=0

y(n − j)

)
(1)

However, a multi-bit multiplier is necessary to com-
pute the expression. Let product-of-sums (1) be ex-
panded to sum-of-products (2).

N−1∑
i=0

N−1∑
j=0

x(n − i)y(n − j) (2)

Exclusive-OR (E-OR) gates compute sub-products
x(n − i)y(n − j). Sigma-Delta domain adders [2] sum
up the sub-products. Although no multi-bit multiplier
is necessary to compute expression (2), spread modu-
lation noise of sub-products is not much attenuated if
N in the expression is small. If N is large, a large num-
ber of logic gates are required to build a SD domain
multiplier which operates according to expression (2).
Reducing logic gates of the SD domain multiplier is
very important to attain highly precise multiplication.

We draw up a strategy for the reduction. The SD
domain adders for summing the sub-products occupy
large part of the SD domain multiplier. Thus, it is
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Figure 1: 2x2 and 4x4 sub-multipliers.

effective to reduce the adders in circuit scale reduction
of the multipliers. In order to reduce the adders it
is necessary to decrease the number of sub-products
and express the sub-products by small number of bits.
Expression (1) can be transformed to

N/M−1∑
r=0

N/M−1∑
s=0

(
(r+1)M−1∑

i=rM

x(n − i)

)(
(s+1)M−1∑

j=sM

y(n − j)

)

(3)
Although partial sums

∑
i x(n−i)(≡ Sr) and

∑
j y(n−

j)(≡ Ss) are (M + 1)-level signals, their product does
not take all of (M + 1)2 levels. When M = 2, Sr,
Ss∈{−2, 0, +2}. Then, SrSs∈{−4, 0, +4}. Thus, the
sub-products SrSs can be expressed by only two bits
m1, m0∈{−1, +1} as

SrSs = 2(m0 + m1) (4)

When M = 4, partial sums are Sr, Ss∈{−4, −2, 0, +2,
+4}. Then, sub-product is SrSs∈{−16, −8, −4, 0, +4,
+8, +16}. The sub-products SrSs can be expressed,
for example, by 6 bits ma,1, ma,0, mb,1, mb,0, mc,1,
mc,0 as

SrSs = 2(ma,1+ma,0)+4(mb,1+mb,0)+8(mc,1+mc,0) (5)

Figure 1 shows sub-multipliers to compute sub-
products SrSs.

3. SD Domain Adder

In this section we introduce SD domain adders based
on binary sorting networks [4]. Figure 2(a) shows a
binary sorting network. The network transfers “1”s
in its input set to upper output terminals and “0”s
to lower output terminals. Hereafter we assume that
logic values “0” and “1” represent integers −1, +1.

Binary sorting network
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Figure 2: L-input binary SD domain adder.

A SD domain adder which outputs sum of L binary
inputs xi(n)∈{−1, +1}, i=1, 2, · · ·, L, in binary SD
modulated signal form is built by using the sorting
network as shown in Fig. 2. Outputs W

[i]
U and W

[i]
L ,

i=1, 2, · · ·, L−1, of the sorting network are connected
to it inputs. Center output y(n) is reversed and fed
back to L−1 inputs. If the sorting network has 4L−3
inputs, outputs V

[i]
U and V

[i]
U , i = 1, 2, · · · , L−1, always

take +1 and −1 respectively. In this case the sum of
all the outputs

u(n) =

L−1∑
i=1

V
[i]

U (n) +

L−1∑
i=1

W
[i]
U (n) + y(n)

+

L−1∑
i=1

W
[i]
L (n) +

L−1∑
i=1

V
[i]
L (n) (6)

satisfies the following equation:

u(n + 1) = u(n) +
1

L

L∑
i=1

xi(n) − y(n) (7)

Then, we realize that center output

y(n) = sgn(u(n)) (8)

is the SD modulation of the sum of the inputs xi(n).
A SD domain adder which outputs sum of L K-

level inputs in K-level SD modulated signal form is
built mainly of a front sorting network and an inter-
nal L-input binary SD domain adder as shown in Fig.
3. The K-level inputs and output are composed of
equally weighted K − 1 bits variables x

[j]
i and y[j],

i = 1, 2, · · · , L, j = 1, 2, · · ·K − 1. Outputs from the
front sorting network form K−1 groups each of which
consists of L elements (s[1]

i , s
[2]
i , · · · , s[L]

i ), i=1, 2, · · ·,
K − 1, as shown in Fig. 3. The output is y [i]=±1 if
s
[1]
i =s

[2]
i = · · · =s

[L]
i =±1. The L elements of a group
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Figure 3: Multi-input multi-level SD domain adder.

are supplied to the internal L-input binary SD domain
adder and the output of the internal adder is given to
y[i] if the group contains both +1 and −1. It is shown
in [4] that output set (y[1], y[2], · · ·, y[K−1]) determined
in this way is in K-level SD modulated signal form.

4. Design and Evaluation

We present examples of SD domain multipliers built
of the sub-multipliers and the adders shown in previ-
ous sections. Figure 4 shows a (NxN=)4x4 SD do-
main multiplier consisting of four (MxM=)2x2 sub-
multipliers, one 4-input 3-level SD domain adder, and
one 2-input binary SD domain adder. Figure 5 shows
an (NxN=)8x8 SD domain multiplier consisting of
four (MxM=)4x4 sub-multipliers, three 8-input 2-
level SD domain adders, and three 2-input binary SD
domain adders. The outputs of the sub-multipliers can
be weighted by cascading 2-input binary SD domain
adders as given in Eq. (5).

We will evaluate 4x4, 8x8 and 16x16 SD domain
multipliers with 2x2 and 4x4 sub-multipliers. Table 1
shows the gate counts of the multipliers. The upper
and the lower numbers in each entry of the table re-
spectively show the gate counts of a multiplier with
only 2-input binary adders for summing sub-products
and a multiplier with multi-input multi-level adders.
Figure 6 presents noise power contained in the out-
puts of 8x8 multipliers and multipliers with 2x2 sub-
multipliers.
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Figure 4: A 4x4 multiplier.

5. Discussion

We find from Tab. 1 that the SD domain multipliers
with 2x2 sub-multipliers and the multipliers with 4x4
sub-multipliers consume about 60 and 50% of the logic
gates required to build preceding multipliers with E-
OR gates for 1x1 sub-multiplication. The table also
shows that using multi-input multi-level adders for
summing sub-products does not always effectively re-
duce the gate counts. This is because the adder with
many inputs has a large front sorting network.

Figure 6(a) shows that the output noise level of large
NxN SD domain multiplier is low. The figure teaches
us that the circuit scale reduction is very important
in building practical scale and high precision multipli-
ers. Figure 6(b) shows that the output noise level of
SD domain multiplier with large MxM sub-multipliers
is low. This is because such sub-multipliers can at-
tenuate SD modulation noise before computing sub-
products.
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Figure 6: Output noise power of SD domain multipliers.

Table 1: Gate counts of SD domain multipliers with
2-input binary adders (upper) and with multi-input
multi-level adders (lower).

339

1246
943

4794
4968

369
267

1537
1594

6129
6823

641
805

2625
3107

10481
12335

NxN

4x4

8x8

16x16

MxM 1x1 2x2 4x4

6. Conclusions

We have presented a design scheme for compact SD
domain multipliers. As shown in Tab. 1 we found
that using large sub-multipliers was effective in reduc-
ing the gate counts. Developing sub-multipliers larger
than 4x4 is one of our future works. The front sort-
ing networks of multi-input multi-level adders consume
large number of logic gates. The sorting networks can
also be built of analog adders and analog threshold

circuits. This analog design approach has a possibility
to downsizes the sorting networks. To investigate the
possibility is our another future subject.

Acknowledgment

The authors would like to thank Osaki Electric
Company, Ltd. for the financial support for this re-
search.

References

[1] J. C. Candy and G. C. Temes (eds.), “Oversampling
Delta-Sigma Data Converters,” IEEE Press, 1992.

[2] H. Fujisaka, R. Kurata, M. Sakamoto and M. Morisue,
“Bit-Stream Signal Processing and its Application to
Communication Systems,” IEE Proceedings, Circuits,
Device and Systems, vol. 149, No. 3, pp.159-166, 2002.

[3] I. Pitas and A. N. Venetsanopoulos, ”Nonlinear Digi-
tal Filters,” Kluwer Academic Pubilishers, 1990.

[4] T. Katao, K. Hayashi, H. Fujisaka, T. Kamio and
K. Haeiwa, “Sorter-based Sigma-Delta Domain Arith-
metic Circuits,” Proceedings of ECCTD, 2007.

- 66 -


	Navigation page
	Session at a glance
	Technical program

