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Abstract—This paper studies dynamics of 1-D maps
with a trapping window. The window can change chaotic or
quasi-periodic orbits of original 1-D maps into various su-
perstable phenomena. Using some examples of piecewise
linear systems, we analyze dynamics precisely. Applica-
tion to A/D converters is also discussed.

1. Introduction

This paper studies dynamics of 1-D maps with a trap-
ping window (ab. TWmaps). When an 1D map exhibits
torus or chaos, the window can change it into complex su-
perstable periodic orbit (ab. SSPO) [1]- [5]. The SSPO has
interesting properties : superstable for initial state, very fast
transient to stable steady state and sensitivity for parameter
perturbation. There exist complicated bifurcation phenom-
ena of rich SSPOs [3] and their analysis is pretty hard. Such
TWmaps appear in some practical systems : chaos control
systems [5], sigma-delta modulators with a trapping win-
dow [6], a simplified model of power converters [7], a B-Z
map with noise-induced order [8]-[9] and so on. Analysis
of TWmap and SSPOs are important to approach new bi-
furcation theory and provides basic information for design
of practical systems.

This paper studies the 1D TWmaps and related applica-
tions. First, we overview the TWmaps with SSPOs. Sec-
ond, we study an example of the TWmaps : a circle map
with the window. If the window does not present the map
exhibits periodic behavior or torus. We then investigate ef-
fects of the parameter on the window and clarify interest-
ing bifurcation: as the slope decreases to zero, the torus can
change into complicated SSPO; as the slope increases, the
torus can change into various chaotic behavior.

Third, we consider an application of 1-D TWmap to
analog-to-digital converters (ab. ADCs). Dynamics of the
circle map is related closely to that of basic ADC [10], [11].
Adding a zero-slope window to the circle map, resolution
and robustness can be improved dramatically. Note that
we have discussed 1-D TWmap in [1], however effects of
parameter(s) of the window have not been discussed suffi-
ciently.
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Figure 1: Feature of 1-D TWmap.

2. 1-D maps with a trapping window

We consider the TWmaps as shown in Fig. 1 :

xn+1≡F(xn)=


f1(xn) for xn ! W
sxn + h for xn ∈ W, (1)

where xn ∈ I1 is a state variable, 0 ≤ h ≤ 1, I1 ≡ [0, 1]
and n denotes discrete time. f1 and F are maps from I1 to
itself. W ⊂ I1 represents a trapping window having a slope
s. Typical maps are shown in Fig. 2.
If a width of the window |W | = 0, the map exhibits chaos

when f1 is the tent map as shown in Fig. 2 (c).
If |W | " 0 and s = 0 as shown in Fig. 2 (b) and (d), the

orbits can be changed into SSPOs [5], [1].
If |W | " 0 and s " 0, the TWmaps exhibit periodic and

chaotic phenomena and various bifurcations as shown in
Section 3. Hereafter, we focus on the case where f1 is
equivalent to the circle map such as Fig. 2 (b). Note that
dynamics of the circle map is related to some practical sys-
tems such as ADCs [6] and PLLs [12].

3. A circle map with a trapping window

We show objective TWmap in Fig. 3 and consider its
dynamics. Fig. 3 is referred to as a circle TWmap and is
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Figure 2: Typical behavior of 1-D maps. (a) Torus, (b) SSPO in
a TWmap based on circle map, (c) Chaos, (d) SSPO in a TWmap
based on chaotic map.
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Figure 3: Feature of the circle TWmap.

described by

xn+1 = F(xn)=




xn − Q(xn) + u for xn ! W

sxn − Q(xn) + u for xn ∈ W,

yn ≡ Q(xn) =



1 for xn ≥ xc
0 for xn < xc,

(2)

where u ∈ [0, 1] is a control parameter and xc is the center
of W. Let W ≡ [xc − ε, xc + ε]. ε denotes a half width of
the window. For simplicity, we assume 0 ≤ ε < 0.5 and
0 ≤ s < 1

ε where xc ≡ 1 − u. As a preparation, we de-
scribe the case where the window does not present. In this
case, Eq. (2) is equivalent to the circle map. u corresponds
to the rotation number and the TWmap exhibits periodic
and quasi-periodic orbits for rational and irrational rotation
numbers, respectively.
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Figure 4: Typical phenomena of the circle TWmap for s = 0 and
ε = 0.1. (a) SSPO for u = 0.24, (b) SSPO for u = 0.72, (c) A
bifurcation diagram. All the orbits are SSPOs.
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Figure 5: Typical phenomena of the TWmap for s = 0.1 and
ε = 0.1. (a) Periodic orbit for u = 0.24, (b) Periodic orbit for
u = 0.72, (c) A bifurcation diagram.

First, we consider the case of |W | " 0 and s = 0. The
TWmap has a zero slope on the window as shown in Fig. 4
(a) and (b). We can see that periodic/quasi-periodic orbits
(torus) for |W | = 0 (see Fig. 2 (a)) can be changed into
various SSPOs. If Eq. (3) is satisfied, the orbit is said to be
SSPO with period k [3].

Fk(xsp) = xsp, F j(xsp) " xsp,
d
dxn

Fk(xsp) = 0, (3)

where 0 < j < k is a positive integer and j does not exist if
k = 1. Fig. 4 (c) shows a bifurcation diagram. All the orbits
can hit the window and a variety of SSPOs exist. In order to
characterize phenomena, we then define a frequency ratio :

ω =
1
N

N∑

n=1
yn, (4)
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Figure 6: Characteristics of a frequency ratio ω for ε = 0.1. (a)
s = 0, (b) s = 0.1.
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Figure 7: Typical phenomena of the TWmap for ε = 0.1 and
u = 0.72. (a) Periodic orbit for s = 0.4, (b) Chaos for s = 1.3, (c)
A bifurcation diagram.

where N is a sufficiently large integer. ω represents a ratio
of output 1 of Q(xn) per a period. Characteristics of ω for u
is shown in Fig. 6 (a) which forms incomplete devil’s stair
case.
Second, we consider the case of 0 < s < 1

ε . The slope
on the window of Eq. (2) is non-zero and the map has three
parameters ε, u and s. Note that we assume F(xn) is mod-
ulus 1 if F(xn) > 1 or F(xn) < 0. Fig. 5 shows typical
phenomena of the TWmap. The orbits and bifurcation dia-
gram are similar to that for s = 0 in Fig. 4. In the TWmap,
the slope is s on the window and is 1 otherwise. That is,
if 0 < s < 1, an orbit is stable if it passes through W. It
means that the circle TWmap is robust for small parameter
perturbation of s. Note that the TWmap based on chaotic
map is very sensitive for small parameter perturbation [1].
Characteristics of ω is shown in Fig. 6 (b) which has more
step than Fig. 6 (a).
If the parameter s varies, the TWmap causes various phe-

nomena as shown in Fig. 7. Increasing s, periodic behavior
is changed into chaotic behavior. Since the slope outside
the window is 1, s can govern behavior of the TWmap :
SSPOs for s = 0, periodic behavior for 0 < s < 1, periodic
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Figure 8: Characteristics of En for ε = 0.1.
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Figure 9: A block diagram of ADCs.

behavior/torus for s = 1 and chaos for 1 < s < 1
ε . We then

define En that is a deviation of the frequency ratio ω and
parameter u :

En =
∫ 1

0
|u − ω|du. (5)

Fig. 8 illustrates characteristics of En for s. We can see
that En decreases as s approaches 1. If s = 1, the TWmap
is equivalent to the circle map and ω can take all ratio-
nal number. It should be noted that behavior of the circle
TWmap is stable if s < 1, but unstable if s > 1.

4. Application of the TWmap to ADCs

In this section, we present an application of the TWmap
to ADCs. Fig. 9 shows a block diagram of the ADCs and its
dynamics is described by Eq. (2) where dynamic range I2 ≡
[u − 1, u]. Q denotes a 1-bit quantizer where xc ≡ 0. u and
yn denote an analog dc input and a digital output sequence,
respectively. IfW does not exist, the system becomes basic
ADC [11] where switch S 1 connects to node β at all the
time. It should be noted that the ADC operates within finite
time n up to the code length l. The ADC converts an analog
dc input u into digital output sequence (y1, · · · , yl) and an
approximation is given by integration: ũ ≡ 1

l
∑l
n=1 yn. Fig.

10 (a) and (c) show typical operation and Fig. 11 (a) shows
conversion characteristics.
Applying the window W to the ADC, we obtain ADCs

with a trapping window [6]. If xn entersW, S 1 is connected
to the node α and the operation finishes at trapping time m.
The ADC outputs digital output sequence (y1, · · · , ym) for
input uwherem is determined by the window size ε and the
approximation is given by ũ = 1

m
∑m
n=1 yn. For simplicity,
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Figure 10: Behavior of the ADCs for l = 9. (a) Basic ADC
for u = 0.24 and ũ = 2

9 , (b) ADC with a trapping window for
u = 0.24, ε = 0.1 and ũ = 1

4 . (c) Basic ADC for 0.72 and ũ =
6
9 ,

(b) ADCwith a trapping window for u = 0.72, ε = 0.1 and ũ = 5
7 .
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Figure 11: Comparison with conversion characteristics for l =
9. (a) Basic ADC, (b) ADC with a trapping window for ε = 0.1
and s = 0.

we assume the following conditions :

ε < u < 1 − ε, 1 < m ≤ l, 1
ε
− 1 ≤ l, s = 0, (6)

and let initial state x1 ≡ 0. Fig. 10 (b) and (d) show typical
operation and Fig. 11 (b) shows conversion characteristics.
Operation of the ADC without the window finishes with
fixed time l and ũ is given a fraction with fixed denomina-
tor l. On the other hand, ADC with the window finishes
within m ≤ l and ũ is given a fraction with variable denom-
inator: it can realize higher resolution as suggested in Fig.
10. Note that the circle map for irrational rotation numbers
has quasi-periodic orbits with zero Lyapunov exponent in
the steady state. The circle TWmaps behave periodic or-
bits even if parameter perturbation occurs as shown in Fig.
4 and Fig. 5: ADCs with a trapping window has more ro-
bustness than basic ADC.

5. Conclusions

We have presented the TWmap and consider its SSPOs.
When a slope parameter on the window varies, the TWmap
exhibits various phenomena. The slope can control behav-
ior of the TWmap. The TWmaps are related to ADCs with
a trapping window and it can realize higher resolution and
stronger stability than basic ADCs. Future problems in-
clude detailed analysis of bifurcations and application to
various practical systems.
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