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Abstract— Recently, the possibility of white noise generation
from chaotic PLL has been shown on the basis of numerical
simulation. In this paper we demonstrate chaos with the nature
of white noise experimentally by using a popular PLL-IC module
4046. This hardware implementation is very easy to handle and
many flat power spectra have been obtained at the input of VCO.

I. I NTRODUCTION

In this paper, we try to use some type of chaos issued
from a phase-locked loop (PLL) as a practical source of white
noise in electronic application. At present, noise generators
are typically based either on a digitally generated random
number sequence or amplified physical noise such as shot
noise from the microscopic domain. Chaotic noise derived
from a macroscopic system such as a PLL offers advantages
as a noise source in that it avoids both the finite repetition
interval of digital source and the amplification required of
microscopic noise. In [1] it is shown by computer simulation
that a sinusoidally-driven PLL can generate chaos of which
power spectrum is accurately white over many decades in
frequency. Thus a chaotic PLL might serve as a nearly ideal
noise generator, with non-repetitive, high-level output and flat
power spectrum. The purpose of this paper is to implement
such a PLL with practical integrated circuit module 4046. Our
experimental results present remarkably flat power spectrum
for low frequency region near DC.

II. H EURISTIC ARGUMENT OFWHITE NOISE GENERATION

MECHANISM OF PLLS

Chaos from a sinusoidally driven PLL circuit has been
extensively investigated by [2]. Hence, we will derive the
PLL equation by referring [2]. The PLL can be represented
by the block diagram with respect to phase shown in Fig.1.
The θi(t) is called the input phase, and theθo(t) is called the
output phase. Theφ(t) is called the error phase, and is defined
by φ(t) = θi(t) − θo(t). The nonlinear functionh(φ), a 2π-
periodic function ofφ, is a symmetric triangular characteristics
in our case, because our IC module has an EX-OR type phase
detector. TheF (s) is a low-pass filter (lag-lead filter) with
the following transfer function:F (s) = (1 + τ2s)/(1 + τ1s).

Fig. 1. The phase model of a PLL

From this diagram, one can derive the following differential
equation with respect to the error phase.

d2φ

dt2
+

1
τ1

(1+K0τ2h
′(φ))

dφ

dt
+

(
K0

τ1

)
h(φ) =

d2θi

dt2
+

1
τ1

dθi

dt
(1)

Here we assume that the input signal is modulated by a
sinusoidal waveform so that

dθi

dt
= ∆ω + Msinωmt (2)

We can define the natural angular frequency (ωn) and the
damping coefficient (ζ) as follows:

ωn =
√

K0/τ1 (3a)

ζ = (1 + K0τ2)/2
√

K0τ1 (3b)

We further define the following parameters:

β = ωn/K0 = 1/
√

K0τ1 normalized natural frequency
(3c)

σ = ∆ω/ωn normalized frequency detuning (3d)

Ωm = ωm/ωn normalized modulation frequency (3e)

m = M/ωn normalized maximum angular

frequency deviation (3f)

By changing the timet into τ = ωnt and replacingτ by t
again, (1) and (2) can be normalized to give:

d2φ

dt2
+ β

[
1 +

(2ζ − β)h′(φ)
β

]
dφ

dt
+ h(φ) =

βσ + βmsinΩmt + mΩmcosΩmt

(4)

where2ζ − β = K0τ2/
√

K0τ1 ≥ 0. We investigate here the
lag filter case in which2ζ−β = 0 (τ2 = 0) for simplicity. By
changing the timet into t = t′−θ/Ωm wheretan(θ) = Ωm/β,
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Fig. 2. The potential functionU(φ)

and replacingt′ by t again, equation (4) for the lag filter case
becomes the following simpler form.

d2φ

dt2
+ β

dφ

dt
+ h(φ) = βσ + asinΩmt (5)

a = m
√

β2 + Ω2
m

In (5) the 2π-periodic functionh(φ) (= h(φ + 2nπ), n =
0,±1,±2, ...) is given by the following equation

h(φ) =

{
φ for |φ| < π

2

−φ + π for π
2 < φ < 3

2π
(6)

The dynamics of (5) for small values of ”a” is periodic with
angular frequencyΩm; Namely, the phaseφ is phase-locked
with the external signal. However, with the increase of ”a”,
the phaseφ shows various bifurcations, and at last, it behaves
chaotic. Roughly speaking, there are two types of chaos; one is
bounded in theφ-direction, and the other is unbounded in the
φ-direction. We will explain the difference by using a particle
in a ”washboard” potential.

If we define the potential energyU by

U(φ) =

{
1
2φ2 for |φ| < π

2

− 1
2φ2 + πφ + 1

4π2 for π
2 < φ < 3

2π
(7)

U(φ + 2nπ) = U(φ), n = 0,±1,±2, ...

then (5) with the detuningσ = 0 for simplicity can be written
in the form,

d2φ

dt2
= −U ′(φ)− β

dφ

dt
+ asinΩmt (8)

which corresponds to Newton’s equation for a particle
with coordinateφ acted on by forces due to the potential
(−dU/dφ), viscous damping (−βdφ/dt), and an external drive
(asinΩmt). The washboard potentialU(φ) is illustrated in
Fig.2. The origin of white noise in the washboard system can
be understood as follow. For a typical chaotic state whereφ
is unbounded, the particle mimics one-dimensional Brownian
motion over time scales long compared to the system’s char-
acteristic times. Since the particle is strongly influenced by
the washboard and sinusoidal drive for times of order1/Ωm,
1/ω0 (ω0 = 1: natural angular frequency of the linearized
system), and1/ωr (ωr = β/2: relaxation angular frequency
of the linearized system), it apparently wonders aimlessly to
and fro across the washboard over longer times. The diffusive
character of this motion results because the particle forgets

Fig. 3. The practical PLL circuit. TheR1, R2 andC1 determine the VCO
free-running frequencyfV CO .

where it is, the potential being exactly periodic, with every
trough identical. The Brownian or diffusive nature of the
chaotic motion suggests that, considered over long times,
φ(t) approximates a Wiener-Levy process. Moreover, since
the derivative of a Wiener-Levy process yields a white noise
process, we expect that the voltagev = dφ/dt will exhibit a
flat power spectrum at frequencies substantially belowΩm, ω0,
and ωr [3]. Thus the broadband component ofv is expected
to be white at low frequencies, and a useful white-noise
generator can be realized by using a low-pass filter to remove
the unwanted high-frequency components. In contrast, chaos
bounded in theφ-direction is restricted in one trough ofU ,
therefore, the flow is not diffusive in general and the power
spectrum cannot become flat.

III. W HITE NOISE GENERATION USING A PRACTICAL PLL

Figuer 3 presents a practical circuit to generate chaos. From
Terminal A a carrier signal of which frequency is modulated
by a sinusoidal signal (Msinωmt in (2)) is applied. We
observe the VCO input voltage at Terminal B. We set that
the detuning between the VCO free running frequency and the
input carrier frequency is zero for simplicity; namely,∆ω = 0.
Therefore,τ1 andτ2 are given as follows:

τ1 = CR , τ2 = 0 (9)

The D.C. loop gainK0 satisfies the relation:

K0 = 4fL (10)

Therefore, by measuring the lock rangefL, one can obtain
K0. In the following experiments, we set each parameter as
follows: fV CO = 46.912 [KHz], R = 183.84 [KΩ], C =
989.59 [pF], τ1 = 181926× 10−9 [1/sec],fL = 4.371× 103

[Hz], K0 = 17.484 × 103 [rad/sec],ωn = 9803.3 [rad/sec],
fn = 1560.2 [Hz], fm = 1400 [Hz], ωm = 8796.4 [rad/sec]
which corresponds toσ = 0, β = 0.5607, Ωm = 0.8973. We
observe power spectrum and time waveform of the VCO input
voltage, because it is represented asdθo/dt = Msinωmt −
dφ/dt. SinceMsinωmt is a single spike, we can observe the
power spectrum of−dφ/dt (which is expected to be white
for the unbounded chaos) at the input of VCO. Similarly in
our computer simulation, we calculateθ̇o = msinΩmt− φ̇ in
(4) as the VCO input voltage to obtain computer-generated
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Fig. 4. The experimentally obtained non-flat power spectrum (a),(b) and
the VCO input time waveform (c). (a) abscissa: left margin = 100mHz, right
margin = 100Hz; ordinate: lower margin = -90dBV, upper magin = 10dBV.
(b) abscissa: left margin = 100Hz, right margin = 100kHz; ordinate: same
as (a). (c) The VCO input time waveform. abscissa: left margin = 0s, right
margin = 64ms; ordinate: lower margin = -4.472V, upper magin = 4.472V

power spectrum.1 Figs. 4 (a) and (b) show the non-flat
power spectrum of chaos observed in our experiments for
comparatively smallM = 17404 [rad/sec] (m = 1.775) 2

Figure 4(c) presents the time waveform of the same signal.
In contrast, Figures 5(a) and (b) show a power spectrum for
chaos observed forM = 22431 [rad/sec] (m = 2.2881)
which is flat between 0.2 Hz to 100 Hz. Figure 5(c) shows
the chaotic time waveform of the same signal. Figures 6(a)
and (b) show the computer-generated power spectrum and
Lissajous pattern associated with Figs. 4(a) and (b) (only the
parameter ”m” is slightly modified:m = 1.740) Clearly, this
chaos is bounded in theφ-direction. Figure 7(a) shows the
computer-generated spectrum associated with Figs.5(a) and
(b). From Fig.7 it is recognized that the spectrum is flat for
Ω =6×10−5 ∼1.5×10−1 which corresponds to 0.1 Hz∼230
Hz. Figure 7(b) shows the Lissajous pattern in theφ − φ̇-
plane which clearly shows unbounded chaotic flow in theφ-
direction.

IV. PRACTICAL DESIGN STRATEGY

From the experiments shown in the previous section, it is
confirmed that the power spectrum of the VCO input voltage
is almost flat from DC to modulation frequencyfm(Ωm).

1In practice, there is a gain for PD and VCO. Therefore, the actual
VCO input voltage should beKθ̇o. The factorK is not measured in our
experiments. So there is some gain difference between the experiment and
the computer simulation.

2In Figs. 4(a) and (b) there is about 25 dBV difference in the ordinate.
This is due to the bandpass filter characteristics of the spectrum analyzer. The
same phenomenon happens for Figs. 5,8 and 9

(a) (b)

(c)

Fig. 5. The experimentally-obtained flat power spectrum (a),(b) and the VCO
input time waveform (c). (a) abscissa: left margin = 100mHz, right margin =
100Hz; ordinate: lower margin = -70dBV, upper magin = 10dBV (b) abscissa:
left margin = 100Hz, right margin = 100kHz; ordinate: same as (a). The scales
of abscissa and ordinate in (c) are the same as those in Figs.4 (c)

(a) (b)

Fig. 6. The computer-genetated power spectrum (a) and the Lissajous pattern
in the φ-φ̇ plane (b) associated with Fig.4 Parameters are:β = 0.5607,
Ωm = 0.8973, m = 1.740, σ = 0 in (4).

Since our purpose is to obtain flat power spectrum for wide
frequency range, and since the lower bound of the flat power
spectrum seems almost DC, it is desirable to expand the upper
frequency limit as large as possible.
For σ = 0 the shape of power spectrum is determined
by parametersβ, Ωm and a in the normalized equation.
These parameters correspond toωn(=

√
K0/τ1), ωm and

A(= M
√

β2 + Ω2
m) such that:ωn = K0β, ωm = ωnΩm,

A = ωna. Therefore, if the power spectrum is flat from D.C.
to Ωm in the normalized equation, it is also flat from D.C.
to fm(= fnΩm) in the real system. In order to expand the
flat power spectrum range, it is necessary to take the natural

frequencyfn = 1
2π

√
K0
τ1

as large as possible for the fixedΩm.
To do this conjecture, we performed the experiments based
on σ = 0, β = 0.5607, Ωm = 0.8973, andm = 2.2881 for
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Fig. 7. The computer-genetated power spectrum (a) and the Lissajous pattern
in the φ-φ̇ plane (b) assosiated with Fig.9. In (b)φ is taken as modulus of
2π. Parameters are:β = 0.5607, Ωm = 0.8973, m = 2.2881, σ = 0 in
(4).

which we obtain reasonable flat power spectrum by computer
simulation and experiments (see Figs.5 and 7). According to
the above strategy we fixfV CO = 70.739 [KHz], R = 18.089
[kΩ], C = 989.59 [pF], and fL = 50.61 [kHz] which leads
to K0 = 202.44× 103 [rad/sec],τ1 = 17901 × 10−9 [1/sec],
ωn = 106345 [rad/sec],fn = 16925.3 [Hz]. Compared to
the previous section’s experiments,fn becomes approximately
10.8 times as large as the previous value. In addition we choose
fm = 15.163 [kHz] and M = 243788 [rad/sec]. From this
choice of parameters, the normalized parameters become as:
σ = 0, β = 1/

√
K0τ1 = 0.5253, ωn =

√
K0/τ1 = 106345.1

[rad/sec],m = M/ωn = 2.2924, Ωm = ωm/ωn = 0.8959.
Figure 8 presents the power spectrum and time waveform for
the sameβ, Ωm andm. The flat power spectrum expands 20
times as large as that of Fig. 5 (100mHz-2KHz).
At last, we will demonstrate very flat spectrum experimentally
obtained for fV CO = 485.84 [KHz], R = 4.703 [KΩ],
C = 98.643 [pF], fL = 284.47 [KHz], fm = 126.80 [KHz],
M = 2570.451× 103 [rad/sec] (β = 2ζ = 1.376, m = 1.641,
Ωm = 0.5087 σ = 0) in Figs.9(a) and (b). It is flat for
approximately 0.2 Hz∼100 KHz. 3

V. CONCLUSION

We demonstrate chaos with white noise spectrum. Although
there is no clear theoretical background, we confirm from our
experiments that the unbounded chaos seem more or less to
have a flat power spectrum at the VCO input. In our future
problem, we will analyze this system more theoretically to
establish the design method as a PLL white noise generator.

3Unfortunately, since the maximum frequency is 100 [KHz] in our FFT
analyzer, we cannot measure the frequency over 100 [KHz], so far.

(a) (b)

(c)

Fig. 8. The experimentally-obtaind flat power spectrum (a),(b) and the VCO
input time waveform (c). The scales of abcissa and ordinate in (a),(b) and (c)
are same as those in Figs.5 (a),(b) and (c).

(a) (b)

Fig. 9. The flattest power spectrum obtained in our experiment. The scales
of abcissa and ordinate in (a),(b) are same as those in Figs.4 (a),(b).
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