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Abstract—This paper studies response of the chaotic
spiking neurons to spike-train inputs. Applying the in-
puts, chaotic behavior is changed into a variety of phenom-
ena and we introduce an interesting phenomenon: apply-
ing some kind of random input, the circuit exhibits iden-
tical nonperiodic steady state response for various initial
states. Such phenomena have been refered to as ”Consis-
tency”. Presenting a simple test circuit, the consistency is
confirmed experimentally.

1. Introduction

Integrate-and-fire neuron models ( IFMs ) have been
studied in order to consider neuron functions and their
engineering applications [1]-[8]. Applying spike-train in-
put, the IFMs can exhibit periodic/nonperiodic responses
whose analysis is basic to construct pulse-coupled net-
works ( PCNs ). The PCNs can exhibit rich syn-
chronous/asynchronous phenomena and have several re-
markable properties as compared with smooth coupled
systems: faster transient to steady state, lower power
consumption and flexible coding ability [9]. The PCNs
have a variety of applications such as image segmenta-
tion [10] [11], associative memories [4], impulsive commu-
nications [5] [6], feature selectors [7] and address-event-
representation [8].

This paper studies response of a chaotic spiking circuit (
CSC ) to spike-train inputs. The CSC can be regarded as a
circuit model of spiking neurons [12] [18]. The CSC can be
a building block of PCNs having a variety of synchronous
patterns with applications. The CSC consists of two capaci-
tors, one linear two-port voltage-controlled current source (
2P-VCCS ) and one impulsive switch [11]. If the input does
not present one capacitor voltage repeats vibrate-and-fire
dynamics and can output various chaotic/periodic spike-
trains. Such behavior is impossible in usual autonomous
IFMs that can not vibrate below the threshold [1] [10]. Ap-
plying an input, the CSC can output a variety of spike-
trains. We consider an interesting phenomenon. That is
”consistency”: applying some kind of nonperiodic input,
the CSC can exhibit identical steady state response for var-
ious initial values.

A simple test circuit is presented and the consistency is
confirmed in the laboratory. We note that ”consistency”
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Figure 1: Chaotic spiking circuit and vibrate-and-fire be-
havior

have been studied mainly in complicated physical systems
[16]. This paper gives the observation of the phenomenon
in simple spiking neurons. It may be basic information
to bridge between interesting nonlinear phenomena and
PCNs.

2. Chaotic Spiking Circuit

Fig. 1 shows the CSC where the 2P-VCCS is character-
ized by [

i1
i2

]
=

[
g11 g12

g21 g22

] [
v1

v2

]
(1)

We assume that capacitor voltages v1 and v2 can vibrate if
v1 is below the threshold VT and S is open. At the moment
when v1 reaches VT , S is closed impulsively and v1 is re-
set to the base E holding continuity of v2: we call it self
switching ( SSW ). U(t) is a spike-train input with ampli-
tude VH − VL. As n-th spike arrives at the time Tn, S is
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Figure 2: Chaos and periodic response for δ = 0.1, p = 1.0.
(a) Periodic response for q = −1.0, (b) Chaotic response for
q = −0.2, (c) Chaotic response for q = 0.8.

closed and v1 is reset: we call it compulsory switching (
CSW ). Repeating these vibrate-and-fire, the CSC can out-
put various spike trains Y . The CSC has unstable complex
characteristic roots δω ± jω, sn = ωTn, and the following
dimensionless variables and parameters are used:

d
dt

[
v1

v2

]
=

[
g11/C1 g12/C1

g21/C2 g22/C2

] [
v1

v2

]
(2)

SSW: (v1(t+), v2(t+)) = (E, v2) if v1(t) = VH

CSW: (v1(t+), v2(t+)) = (E, v2) if t = sn.

U(t) =
{

VH at t = S n

VL otherwise
Y =
{

VH if v1 = VT or t = S n

VL otherwise

τ = ωt, ” · ” ≡ d
dτ , δ =

1
2ω ( g11

C1
+

g22

C2
), q = E

VT
,

p = 1
2ω ( g11

C1
− g22

C2
), x1 =

v1
VT
, x2 =

1
VT

(pv1 +
g12

ωC1
v2),

u(τ) =
U( τω )−VL

VH−VL
, ω2 = − g12g21

C1C2
− 1

4 ( g11

C1
− g22

C2
)2 > 0.

(3)

Eq. (2) is transformed into Eq. (4).[
ẋ1

ẋ2

]
=

[
δ 1
−1 δ

] [
x1

x2

]
for x1 < 1 and u = 0 (4)

SSW: (x1(τ+), x2(τ+)) = (q, x2(τ) − p(1 − q)) if x1(τ) = 1
CSW: (x1(τ+), x2(τ+)) = (q, x2(τ) − p(x1(τ) − q)) if τ = sn.

u(τ) =
{

1 at τ = sn

0 otherwise
y =
{

1 if x1 = 1 or τ = sn

0 otherwise

Let tn be n-th switching instant at which n-th output spike
appears ( y(tn) = 1 in Fig. 1 ) by either SSW or CSW.

2.1. CSC without spike-train input

First we consider the case of CSC without spike-train
input ( u(τ) = 0 ). In this case, Eq. (4) is characterized by
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Figure 3: Typical responses to nonperiodic input (δ =
0.1, p = 1.0, q = −0.2). (a) & (b) Chaotic response
and its dependence on initial state for da = 3.3, db =

5.0. (c) & (d) ”Consistency” and its dependence on ini-
tial state for da = 3.3, db = 3.8. (x1, x2) and (x′1, x

′
2) sys-

tems have the same parameters but different initial values:
(x1(0), x2(0)) = (−0.2, 0) and (x′1(0), x′2(0)) = (−0.2, 0.5).

three parameters: δ, p and q. When S is open (x1(τ) < 1),
the exact piecewise solution is given by

[
x1(τ)
x2(τ)

]
= eδτ

[
cos τ sin τ
− sin τ cos τ

] [
x1(0)
x2(0)

]
(5)

If input does not present then CSW does not exist
and CSC is an autonomous system. The CSC exhibits
chaotic/periodic phenomena for parameter q as shown in
Fig. 2 (a), (b) and (c). In the following parts, we consider
response of chaos in Fig. 2 (b) ( δ = 0.1, p = 1.0, q = −0.2
) to nonperiodic input.

3. Consistency

Here we consider an random input such that two spike
intervals da and db appear randomly. Note that the case
of periodic inputs have discussed in [18]. For simplicity
we consider the case where the appearing rate of da and
db are db/(da + db) and da/(da + db), respectively. In such
a case the CSC usually exhibits chaotic responses which
are sensitive to initial state as shown in Fig. 3 (a) and (b).
However, in some parameter range, we have confirmed in-
teresting response as shown in Fig. 3 (c) and (d): the ran-
dom input causes non-periodic response that is identical for
various initial values. Fig. 4 illustrates measuring system of
this phenomenon: when a common nonperiodic input is ap-
plied to two systems which have different initial states and
the same parameter values of (δ, p, q), the both systems ex-
hibits identical nonperiodic phenomena in the steady state
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( Fig. 3 (d) ). This is ”consistency”: a kind of chaotic syn-
chronous phenomena such that a system exhibits identical
steady state response to nonperiodic input for various initial
values.

System
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Figure 4: System setup to measure ”consistency”.
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Figure 5: A nonperiodic spike-train input signal generator.
(a) The CSC based on Wien bridge oscillator. (b) MPL
(Cm � 0.068 µF, Rm � 10 kΩ, E � 2.2 V, α−1 � 1.0,
β−1 � 4.6, γ−1 � 3.0). (c) IFC (C f � 10 nF, I0 � 40 µA).

4. Laboratory experiments

For the laboratory experiments, we have fabricated a
simple test circuit. The Wien bridge oscillator in Fig. 5
(a) is used in the CSC. The coefficients in Eq. (2) are
g11

C1
=

(k−1)g2−g1

C1
, g12

C1
=
−g2

C1
, g21

C2
=

(k−1)g2

C2
and g22

C2
=
−g2

C2
.

If the input does not present, the circuit exhibits chaotic
phenomena as shown in Fig. 6. It corresponds to Fig. 2
(b). In order to generate random input signal, we have used
manifold piecewise linear chaos generator (MPL[17]). The
differential equation of this system is described by

v̈p − βv̇p + αvp =

{
γE (A)
−γE (B)

(6)

where · ≡ d
dτ′ and τ′ = t

RmCm
. The right-hand side is

switched from (A) to (B) ((B) to (A)) if vq = 0 and vp ≤ 0
(vq = 0 and vp > 0). Fig. 7 shows the chaotic attractor
observed in MPL. The MPL outputs a nonperiodic binary
signal H. It is known that the output alternates E and −E
at the rate of 50 % [17]. This nonperiodic signal is applied
to the integrate-and-fire circuit ( IFC ) as shown in Fig. 5
(c). In the IFC, the capacitor voltage v f is integrated below
the threshold voltage V0. As v f reaches V0, it is reset to the
base voltage ηH instantaneously. Since H is E or −E, the
IFC outputs spike-train U(t) consisting of two inter-spike-
intervals. Applying U(t) to the CSC, we have observed
”consistency” as shown in Fig. 8 (d).
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Figure 6: Laboratory measurements (1/g1 � 40 kΩ, 1/g2 �
50 kΩ, C1 = C2 = C � 2.0 nF, k � 3.5, VT � 1.0 V, E �
0.2 V; δ � 0.1, p � 1.0, q � −0.2). Chaotic phenomena
without spike-train inputs.

5. Conclusions

We have studied response of chaotic spiking circuit with
spike-train input. The CSC exhibits a variety of responses
and we consider ”consistency”: applying some kind of ran-
dom input, the circuit exhibits identical nonperiodic steady
state response for various initial states. We have confirmed
”consistency” phenomena experimentally by presenting a
simple test circuit. Future problems include analysis of
bifurcation phenomena for another parameter and applica-
tions to signal processing by PCNs and to system identifi-
cation from spike-trains.
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Figure 7: Laboratory measurements (Cm � 0.068 µF, Rm �
10 kΩ, E � 2.2 V, α−1 � 1.0, β−1 � 4.6, γ−1 � 3.0).
Chaotic attractor observed in MPL.
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