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Abstract – We introduce a viewpoint of consistency in 
non-autonomous nonlinear dynamical systems. We use the 
Lorenz model driven by chaos and colored noise signals. 
Consistent behavior is observed even though the system is 
in a chaotic motion. The occurrence of consistency can be 
evaluated by the conditional Lyapunov exponent. We 
visualize contraction and expansion regions on the driven 
trajectory in the phase space by using the local conditional 
Lyapunov exponents. The distribution of the local 
conditional Lyapunov exponents is plotted when the drive 
amplitude is increased, and the transition of the emergence 
of consistency is found. Multiple basins of consistency are 
also investigated. 
 
1. Introduction 

 
Many nonlinear dynamical systems have a good 

ability to reproduce consistent response when driven by a 
repeated external signal. Consistency is defined as the 
reproducibility of response waveforms in a nonlinear 
dynamical system driven repeatedly by a signal, starting 
from different initial conditions of the system [1]. The 
concept of consistency raises a general question: how does 
a dynamical system behave with an arbitrary drive signal? 
Consistency may be a universal concept for non-
autonomous dynamical systems. 

Consistency of dynamics is essential for information 
transmission in biological and physiological systems and 
for reproduction of spatiotemporal patterns in nature. 
Consistency has been observed experimentally in rat 
cortical neurons driven by a repeated noise signal [2], and 
consistency may play an important role for information 
processing in neuronal activity. For engineering 
applications, consistency could be useful for the 
implementation of physical one-way function [3] and for 
generating common secure keys for stream cipher. 
Consistency tests could be applied in non-invasive 
diagnostic procedures to detect changes in system 
parameters due to aging, catastrophic events or other 
system changes [4]. 

Consistency is a generalized concept of chaos 
synchronization in coupled nonlinear dynamical systems 
[5]. The conditional stability with respect to a drive signal 
is essential for the emergence of both consistency and 
synchronization. However, we do not restrict a type of 
drive signal for consistency. One can deal with non-

autonomous systems driven by any types of external 
signals in terms of consistency. Many nonlinear dynamical 
phenomena, such as identical synchronization of chaos [5], 
generalized synchronization [6], noise-induced 
synchronization [7], stochastic resonance [8], and 
coherence resonance [9] may be interpreted as a consistent 
behavior of non-autonomous systems with respect to 
external drive signals. 

In this study we introduce a viewpoint of consistency 
in non-autonomous dynamical systems. We use the 
Lorenz model driven by chaos and colored noise signals. 
We observe consistency of the driven Lorenz system even 
though the system is in a chaotic motion. We visualize 
contraction and expansion regions on the driven chaotic 
attractors in the phase space by using the local conditional 
Lyapunov exponents. The distribution of the local 
conditional Lyapunov exponents is changed when the 
drive amplitude is increased. This change indicates the 
emergence of consistency. The basins of consistency for 
the trajectories starting from different initial conditions 
are also discussed. 
 
2. Numerical results 
 
2.1. Temporal waveforms and cross correlations 
 

We used the Lorenz model, consisting on a simple set 
of ordinary differential equations [10]. We used an 
additive drive signal s(t) with the amplitude of D to the y-
variable for a non-autonomous Lorenz model. In our 
calculation we selected s(t) as a deterministic or a 
stochastic noise signal: a Lorenz chaos generated from the 
same set of equations at D = 0 and an exponentially 
correlated colored noise (Ornstein-Uhlenbeck process) 
[11]. 

The temporal waveforms of the drive signal and x-
variable starting from two initial conditions are shown in 
Figs. 1(a) and 1(b). There is a transient before the two 
time series of x-variable converge into the identical 
temporal waveform. We calculated the consistency 
parameter C as a cross correlation [1] of two temporal 
waveforms starting from two different initial conditions 
after transient. The consistency parameter C is calculated 
and plotted as a function of the drive amplitude in the 
cases of a Lorenz chaos and a colored-noise drive signal, 
as shown in Figs. 1(c) and 1(d). C increases and reaches to 
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Fig. 1 (a),(b) Temporal waveforms of the drive signal and 
the x-variable of the driven Lorenz model starting from 
two different initial conditions. (a) Chaos drive and (b) 
colored noise drive. (c),(d) The cross correlation C 
between two temporal waveforms (black curve), the 
conditional Lyapunov exponent λc (blue curve),  and the 
Lyapunov exponent λ (red curve) as a function of drive 
amplitude. (c) Chaos drive and (d) colored noise drive. σ 
= 10, r = 28, and b = 8/3 are used for the Lorenz model to 
observe chaotic behaviors without a drive signal. y-
variable of the Lorenz model is additively driven by a 
Lorenz chaos and a colored noise signal.  
 
 
one as the drive amplitude is increased. We calculated the 
conditional Lyapunov exponent λc and plotted as a 
function of the drive amplitude in Figs. 1(c) and 1(d). The 
sign of λc changes from positive to negative as the drive 
amplitude is increased. It is found that negative λc 
corresponds to C = 1. We also calculated the (normal) 
Lyapunov exponent λ only for the chaos-driven Lorenz 
model (λ cannot be calculated for noise-driven systems 
because of infinite dimensionality). λ is plotted as a 
function of the drive amplitude as shown in Fig. 1(c). It is 
worth noting that λc (measure of consistency) is different 
from λ (measure of chaoticity) in the presence of drive 
signal. At large drive amplitude consistent behavior can be 
observed even in a chaotic motion at the condition of λ > 
0 and λc < 0. The measure of chaos and consistency is 
clearly distinguished in terms of λ and λc. 

 
2.2. Local conditional Lyapunov exponent 

 
The calculation of λc has been already carried out in 

the context of generalized synchronization and noise-
induced synchronization [6,7]. However, the condition of 
the emergence of consistency in driven dynamical systems 
has not been well understood. To investigate deep insight  

of consistency, we introduce the local conditional 
Lyapunov exponent λlc as, 
 

)(
)(

log1
t

tt
tlc ξ

ξ
λ

∆+
∆

=                                      (1) 

 
where )(tξ  is the linearized variables of the Lorenz 
system. For numerical calculation ∆t has a finite time 
corresponding to a time step of the numerical calculation. 
We normalized )(tξ  at each step of numerical integration 
so that the vector )(tξ  can maintain a unit vector. 

We plotted the local conditional Lyapunov exponent 
λlc on the trajectory of the Lorenz butterfly attractor in the 
phase space. Figure 2(a) shows λlc plotted on the 
trajectories in the x-z plane of the three dimensional phase 
space at y = 0 without a drive signal. The expansion (λlc > 
0) and contraction ( λlc < 0) regions are observed and are 
well separated on the attractor. The upper part of the 
attractor along the z axis mainly has contraction regions, 
whereas the lower part of the attractor corresponds to 
expansion regions. Figures 2(b) and 2(c) show λlc on the 
trajectories when the y variable of the Lorenz model is 
additively driven by a Lorenz chaos and a colored noise 
signal, respectively. For chaos drive the attractor becomes 
larger than the original (non-driven) attractor, however, λlc 
is distributed similarly to Fig. 2(a). Contraction regions 
exist on the upper part of the attractor and expansion 
regions appear on the lower part, although the contraction 
and expansion regions do not exactly match to those in 
Fig. 2(a). For noise drive, the distribution of λlc on the 
attractor still preserves, even though the attractor becomes 
more irregular. 

To understand the emergence of consistency, we 
calculated the probability distribution of λlc when the 
drive amplitude is increased. Figure 3(a) shows the three-
dimensional picture of the probability distribution of λlc 
when the noise-drive amplitude is continuously changed. 
The distribution of λlc changes and becomes smooth as the 
drive amplitude is increased. Figures 3(b)-3(d) show the 
probability distribution of λlc at a constant drive amplitude. 
Without the drive signal there are two peaks of the 
distribution: a large sharp peak at the negative λlc and a 
small broadened peak at the positive λlc (Fig. 3(b)). The 
broadened peak at the positive λlc decreases as the drive 
amplitude is increased, and finally disappears at large 
drive amplitudes as shown in Fig. 3(d). The shape peak at 
the negative λlc remains at the same value. The positive 
components of λlc shifts to negative parts as the drive 
amplitude increases, and consistency appears at large 
drive amplitudes. Note that the distribution of λlc does not 
change drastically and the slight change of λlc by the drive 
signal results in the emergence of consistency. The 
conditional Lyapunov exponent λc corresponds to the 
average of the distribution of λlc. The transition of λlc from  
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Fig. 2  The driven butterfly. (a) No drive, (b) chaos drive 
D = 15 , and (c) colored noise drive D = 40. The color 
indicates the local conditional Lyapunov exponent λlc 
plotted on the trajectory in the x-z plane of the phase 
space. Expansion (red) and contraction (blue) regions are 
observed on the trajectory. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3  (a) Three dimensional picture of the distribution of 
local conditional Lyapunov exponent λlc as a function of 
drive amplitude. (b)-(d) Distribution of λlc at constant 
drive amplitudes. (b) D = 0, (c) D = 30, and (d) D = 60. 
The conditional Lyapunov exponent λc is obtained from 
the average of the distribution of λlc: (b) λc = 0.863, (c) λc 
= - 0.058, and (d) λc = - 1.322. 
 
 
 
positive to negative components shown in Fig. 3 indicates 
the emergence of consistency. λlc is thus a good measure 
to visualize the contraction and expansion regions in the 
phase space (Fig. 2) and to evaluate the transition of the 
emergence of consistency (Fig. 3). 

 
2.3. Multiple basins of consistency 

 
The basin of consistency (regions of initial conditions 

that can lead to consistent trajectory) is a very important 
issue. We calculated the basin of consistency in the phase 
space of the noise-driven Lorenz model. Here we used r = 
13 so that the Lorenz system has two fixed points without 
a drive signal. x-variable is additively driven by a colored-
noise signal. In the case of small drive amplitude of D = 
10 we obtained two types of consistent trajectories 
depending on the initial conditions. We calculated the 
basins of consistency by changing the initial conditions in 
the phase space. We used a set of colored-noise drive 
signals (ten different temporal waveforms) and calculated 
the probability to converge into one of the two consistent 
trajectories. The probability is plotted as a color code on 
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Fig. 4  (a) Multiple basins of consistency at D = 10. Black 
lines indicate two consistent trajectories. Color indicates 
the probability of converging into one of the two 
trajectories (trajectory 1). Red color corresponds to the 
basin for the trajectory 1, and blue color corresponds to 
the basin for the trajectory 2. (b) Single basin of 
consistency at D = 30. Black line indicates the consistent 
trajectory 1. Red color indicates the basin for the 
trajectory 1. The Lorenz model has two fixed points 
without a drive signal (r = 13). x-variable of the Lorenz 
model is additively driven by a colored-noise signal. 
 
 
 
the x-y plane of the three-dimensional phase space at z = 
12, as shown in Fig. 4(a). Two trajectories (black parts) 
are located near the original fixed points and there exists 
two basins of consistency (red and blue regions in Fig. 
4(a)) for the two trajectories. It is worth noting that the 
trajectory is exactly identical after transient when starting 
from the same basin. The existence of more than one 
basin is called multiple basins of consistency. The 
boundary of the two basins is not critical and there is 
some chance of escaping to the other trajectory around the 
basin boundary. As the drive amplitude is increased at D = 
30 the two trajectories become larger and merge together. 
There exists only one trajectory and single basin of 

consistency for all the initial conditions, as shown in Fig. 
4(b). It is found that the size of basin depends on the 
amplitude of the drive signal. 
 
3. Conclusion 
 

We have introduced a viewpoint of consistency in 
non-autonomous dynamical systems. We have used the 
Lorenz model driven by chaos and colored noise signals. 
Consistency is observed even though the system is in a 
chaotic motion. We have visualized contraction and 
expansion regions on the driven chaotic attractors in the 
phase space by using the local conditional Lyapunov 
exponents λlc. The distribution of λlc is changed when the 
drive amplitude is increased. The emergence of 
consistency is clearly observed by using the distribution of 
λlc. Multiple basins of consistency have been also found. 
These aspects of consistency may be general features that 
can be observed in many non-autonomous nonlinear 
systems. Consistency may provide a new viewpoint in 
non-autonomous nonlinear classical and quantum systems. 
 

References 
 

[1] A. Uchida, R. McAllister, and R. Roy, Phys. Rev. Lett., 
vol.93, pp.244102, (2004). 
[2] Z. F. Mainen and T. J. Sejnowski, Science, vol.268, 
pp.1503, (1995). 
[3] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, 
Science, vol.297, pp.2026, (2002). 
[4] L. Moniz, T. Carroll, L. Pecora, and M. Todd, Phys. 
Rev. E, vol.68, pp.036215, (2003). 
[5] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett., vol.64, 
pp.821, (1990); A. Pikovsky, M. Rosenblum, and J. 
Kurths, Synchronization (Cambridge University Press, 
Cambridge, UK, 2001); S. Boccaletti, J. Kurths, G. Osipov, 
D. L. Valladares, and C. S. Zhou, Phys. Rep., vol.366, 
pp.1, (2002). 
[6] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring and H. 
D. I. Abarbanel, Phys. Rev. E, vol.51, pp.980, (1995); H. 
D. I. Abarbanel, N. F. Rulkov and M. M. Sushchik, Phys. 
Rev. E, vol.53, pp.4528, (1996); L. Kocarev and U. Parlitz, 
Phys. Rev. Lett., vol.76, pp.1816, (1996). 
[7] A. Maritan and J. R. Banavar, Phys. Rev. Lett., vol.72, 
pp.1451, (1994); A. S. Pikovsky, Phys. Rev. Lett., vol.73, 
pp.2931, (1994); C. Zhou and J. Kurths, Phys. Rev. Lett., 
vol.88, pp.230602, (2002). 
[8] L. Gammaitoni, P. H"anggi, P. Jung, and F. 
Marchesoni, Rev. Mod. Phys., vol.70, pp.223, (1998). 
[9] A. S. Pikovsky and J. Kurths, Phys. Rev. Lett., vol.78, 
pp.775, (1997). 
[10] E. N. Lorenz, J. Atmos. Sci., vol.20, pp.130, (1963); 
E. N. Lorenz, “The Essence of Chaos,” University of 
Washington Press, Seattle, 1993. 
[11] R. F. Fox, I. R. Gatland, R. Roy, and G. Vemuri, Phys. 
Rev. A, vol.38, pp.5938, (1988). 

- 42 -


	Navigation page
	Session at a glance
	Technical program

