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Abstract—
Congestion of packets in the Internet is the most un-

desirable problem to securely communicate between end
users. Thus, many approaches have been attempting to
resolve such a problem. We have also proposed a rout-
ing strategy with chaotic neurodynamics[1]. The chaotic
neurodynamics is introduced to alleviate the packet con-
gestion, then, the routing strategy shows high performance
for complex networks comparing with the shortest path ap-
proach (the Dijkstra algorithm). In the routing strategy,
an adjacent node from which a path to a destination of a
packet is the shortest is determined as a transmitting node.
However, if we obtain more information, we expect that the
performance of the routing strategy becomes higher. From
this view point, in this paper, we extend the routing strat-
egy, combining information of the shortest path and waiting
times at adjacent nodes. We show that the improved routing
strategy has high performance for the complex networks.

1. Introduction

Packet congestion is the most undesirable issue in the
Internet because it leads to loss and delay of packets. The
packet congestion is related to a spatial structure of a com-
puter network and a routing strategy. To alleviate the packet
congestion of the computer networks, there are two direc-
tions of research.

The first one is to analyze a topology of a computer
network in detail, then, propose a proper routing strat-
egy which works well on the computer network. For ex-
ample, Arenas et al. focused on Clay-tree networks[2].
Scale-free networks proposed by Barábasi and Albert[3]
have also been widely studied[4, 5]. The second one is
to propose a routing strategy which works well on various
topologies of the computer networks. Horiguchi et al. pro-
posed a routing strategy based on mutual connection neu-
ral networks[6]. In addition, to improve the performance
of the routing strategy[6], they introduced the reinforce-
ment learning[7], then, they showed the routing strategy
has high performance for a fractal lattice, a small-world
networks[8] and the scale-free networks[3]. Kimura et al.
also modified the routing strategy[6] in which a stochas-
tic effect is introduced[9], and the modified routing strat-
egy showed high performance for small-world type ran-
domized networks and the scale-free networks[3]. In the
present work, as the second direction, we proposed an ef-
ficient routing strategy with load-balancing using chaotic

neurodynamics for the complex networks.
In our computer network model, a node is taken to be

both hosts and routers. In other words, the nodes produce
packets and decide routes of the packets. A link serves as
a pathway through which packets are transmitted. When a
packet is generated at a node, it is transmitted from a node
to another through the links. Then, the packet is stored at
the tail of the buffer of the transmitted node. All the pack-
ets are transmitted according to First-In-First-Out basis. In
addition, if the buffer of a node is full, a packet transmitted
to the node will be removed. Also, the packet movement is
limited by the upper number of hops with which a packet
has been routed. Thus, if this limit is exceeded, the packet
is also removed. In such a case, the packet is retransmitted
from its source until it will be delivered to its destination.

A good routing strategy is to transmit the packets to
the destinations as quickly as possible. The Dijkstra al-
gorithm is one of the basic routing strategies which trans-
mits a packet to its destination along with the shortest path
to destination of the packet. If all the nodes in the com-
puter network have high performance, that is, the nodes
have large buffer sizes and transmit many packets at the
same time, this routing strategy works well. However, the
buffer size and throughput of each node is different in the
real computer network. It means that if one uses the Di-
jkstra algorithm, the packet congestion occurs in the real
computer network. Thus, it is a very important problem
to propose a sophisticated routing strategy for avoiding the
packet congestion.

To alleviate the packet congestion, one of the possible
strategies is not to transmit the packets to an adjacent node
to which the packets just have been transmitted for a while.
From this view point, we have already proposed a rout-
ing strategy with chaotic neurodynamics[1]. In this routing
strategy, a refractory effect, which is an important charac-
teristic in nerve membrane[10] and produces the chaotic
neurodynamics, memorizes a past routing history. Using
the refractory effect or the past routing history, the pro-
posed strategy shows high performance for the small-world
type randomized networks and the scale-free networks[1].

In the routing strategy[1], each node determines a trans-
mitted node of the packet using the shortest path informa-
tion and the chaotic selection. Although the routing strat-
egy shows high performance, if the node obtains additional
information, we expect that the performance of it becomes
higher. One of the efficient additional information is an
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waiting time at an adjacent node or the number of queue-
ing packets at the adjacent node. Thus, in this paper, we
improve the previous routing strategy[1]. We confirm that
the improved routing strategy has high performance for the
complex networks, such as the small-world networks[8]
and the scale-free networks[3].

2. A routing method with chaotic neurodynamics

In this section, we explained how to construct the pro-
posed routing strategy. First of all, let us start with con-
structing a model computer network. The model computer
network has N nodes, and the ith node has Ni adjacent
nodes (i = 1, . . . ,N). Then, we assign a neural network
to each node. That is, the ith node has its own neural
network which consists of Ni neurons. Ni neurons corre-
spond to Ni adjacent nodes. The firing of the i jth neuron
( j = 1, 2, . . . ,Ni) encodes the transmission of a packet from
the ith node to the jth adjacent node.

In the proposed routing strategy, each node has its own
neural network which operates to minimize a distance of
the transmitting packet from the ith node to its destination,
and an waiting time at the jth adjacent node. To realize this
routing strategy, the internal state of the i jth neuron in the
neural network is defined as:

ξi j(t + 1) = β
{

H
(

1 −
di j + d jg(pi(t))

dc

)

+ (1 − H)
(

1 −
q j(t)

b

)}

, (1)

where di j is a static distance from the ith node to its jth
adjacent node; pi(t) is a transmitted packet of the ith node
at the t-th iteration; g(pi(t)) is a destination of pi(t); d jg(pi(t))

is a dynamic distance from the jth adjacent node to g(pi(t)),
that is, d jg(pi(t)) depends on g(pi(t)); dc is the size of the
computer network; β is a normalization parameter; q j(t) is
the number of queueing packets at the jth adjacent node
at the t-th iteration; b is the buffer size of each node; H
decides priority of the first term and the second term.

If the jth adjacent node is the closest to g(pi(t)), and it
has the small number of the queueing packets, ξi j(t + 1)
takes the largest value. In the routing strategy[1], the first
term of Eq.(1) is only used whether the jth adjacent node
is an optimum one or not. The second term of Eq.(1) ex-
presses an waiting time at the jth adjacent node until pi(t)
will be transmitted from the jth adjacent node to the next
transmitted node. By adding the waiting time, each node
selects the optimum adjacent node more efficiently and
flexibly.

Next, we assigned the refractory effect[10] to each neu-
ron. The refractory effect is one of the essential character-
istics of a real neuron: a neuron which has just fired hardly
fires for a while. In our strategy, we use the refractory ef-
fect as a memory effect. Namely, each node can memorize
a past routing history using the refractory effect, then, an
adjacent node to which many packets have been transmit-

ted is not selected as a transmitted node of the packets for
a while. The refractory effect is described as follows:

ζi j(t + 1) = −α
t
∑

d=0

kd
r xi j(t − d) + θ, (2)

where α is a control parameter of the refractoriness; kr is
a decay parameter of the refractoriness; xi j(t) is the output
of the i jth neuron at the t-th iteration that will be defined in
Eq.(4); θ is a threshold.

Finally, a mutual connection is assigned to each neuron.
The mutual connection controls firing rates of the neurons,
because too frequent firing often leads to a fatal situation
of the packet routing. The mutual connection is defined as
follows:

ηi j(t + 1) = W −W
Ni
∑

j=1

xi j(t), (3)

where W > 0 is a parameter and Ni is the number of adja-
cent nodes at the ith node.

Then, the output of the i jth neuron is defined as follows:

xi j(t + 1) = f {ξi j(t + 1) + ζi j(t + 1) + ηi j(t + 1)}, (4)

where f (y) = 1/(1 + e−y/ε). In this algorithm, if xi j(t +
1) > 1/2, the i jth neuron fires; the packet at the ith node
is transmitted to the jth adjacent node. If the outputs of
multiple neurons exceed 1/2, we defined that the neuron
whose output is the largest only fires.

3. Computer simulation

To evaluate the performance of the proposed routing
strategy, we compared the proposed routing strategy with
three kinds of routing strategies. The first one is the
Dijkstra algorithm. The second one is a conventional
routing strategy with chaotic neurodynamics (the CNN
strategy)[1]. The third one is a routing strategy with a de-
cent down-hill dynamics (which used only in Eq.(1) (the
DD strategy)).

The computer simulations are conducted as follows:
first, we produced random values from one to five, and as-
signed them as the throughputs at all nodes. In addition,
each node calculates the shortest path from the node to the
other nodes. Namely, each node always has a static rout-
ing table which contains an information list of the shortest
distances between any two nodes. Each packet has a desti-
nation and the destination is randomly assigned using uni-
formly distributed random numbers. Then, at every node,
an optimal adjacent node is selected and the packets are si-
multaneously transmitted to their destinations. The buffer
size of every node is set to 1, 000, and the upper number
of hops of the packet movement is set to 128. A packet is
removed if the packet exceeds the upper number of hops.
In such a case, the packet is retransmitted from a source to
its destination until it will be delivered to the destination.
We conducted 10 simulations to average the results.

We repeated the link selection and packet transmission
for 10, 000 iterations. We fixed the total number of packets
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Figure 1: Rewiring probabilities (Rp) and the number of the packets lost before arriving at their destinations(L) for (a)
S̄ = 10, (b) 50, and (c) 100, and the number of delivered packets to their destinations (A) for (c) S̄ = 10, (d) 50, and (f)
100 for the small-world networks.

in the computer network. Thus, when the packet arrived at
its destination, we generated a new packet. Then, a source
and its destination of the new packet are randomly decided
again using uniformly distributed random numbers. We set
the parameters in Eqs.(1)–(4) as follows: β = 1.2, H = 0.8,
α = 0.045, kr = 0.98, θ = 0.5, W = 0.05, and ε = 0.05. We
also set dc as a diameter of the computer network, which is
defined as the longest distance between two nodes.

As the topologies of the computer networks, 100
nodes of the small-world networks[8] and the scale-free
networks[3] are used in these simulations. To evaluate the
performance of the proposed strategy and the three conven-
tional routing strategies, we measured an average number
of stored packets at each node, S̄ , the number of packets
lost before arriving at their destinations, L, and the number
of delivered packets to their destinations, A.

First, we evaluated the proposed strategy, the CNN
strategy[1], the DD strategy, and the Dijkstra algorithm
for the small-world networks. The small-world network
is produced by the same manner as proposed by Watts
and Strogatz[8]. First, N nodes are put on a closed one-
dimensional ring and each node is connected its K-th near-
est neighbors. Then, each link is randomly rewired with
probability Rp. We set N and K to 100 and 4, respectively.

Results for the small-world networks are shown in Fig.1.
In Figs.1(a), (b) and (c), although the proposed strategy and
the DD strategy have almost no removed packets (L) when
the average number of stored packets (S̄ ) increases, val-
ues of L of the CNN strategy and the Dijkstra algorithm
become large. In addition, in Figs.1(d), (e), and (f), the
number of delivered packets to their destinations (A) of
the proposed strategy becomes larger than the other rout-

ing methods when the rewiring probabilities (Rp) increase.
In Figs.1(d), (e), and (f), although the number of deliv-
ered packets (A) of the CNN strategy is the almost same
as that of the DD strategy, the number of removed packets
(L) of the CNN strategy is larger than that of the DD strat-
egy. Thus, from the results of Fig.1, the performance of the
CNN strategy is worse than the DD strategy.

Next, we evaluated the proposed strategy, the CNN strat-
egy, the DD strategy, and the Dijkstra algorithm for the
scale-free networks. The scale-free networks are generated
in the same way as Barábasi and Albert[3]. This network
is constructed by the following procedure: first, we made
a complete graph which has four nodes. Then, we put a
new node with three links at every time step. Next, we
connected three links of the newly added node to the nodes
already existing in the computer network with the probabil-

ity Π(ki) =
ki

∑n
j=1 k j

, where ki is the degree of the ith node

(i = 1, . . . , n); n is the number of nodes at a current itera-
tion.

Results for the scale-free networks are shown in Fig.2.
In Fig.2(a), the number of removed packets (L) of the CNN
strategy and the Dijkstra algorithm rapidly increases when
the average number of stored packets at each node (S̄ ) be-
comes large. On the other hand, the proposed strategy and
the DD strategy have no removed packet (L) even if S̄ be-
comes large. In addition, in Fig.2(b), the proposed strat-
egy transmits more packets to their destinations when S̄
increases comparing with the other routing strategies. In
Fig.2(b), as well as the results of the small-world networks
(Fig.1), because the number of removed packets (L) of the
CNN strategy is larger than that of the DD strategy, the per-
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Figure 2: Relationship between an average number of
stored packets (S̄ ) and (a) the number of packets lost be-
fore arriving at their destinations (L), and (b) the number
of packets delivered to their destinations (A) for the scale-
free networks.

formance of the CNN strategy is worse than the DD strat-
egy for the scale-free networks.

In Ref.[1], the buffer size of each node is set to the prod-
uct of 10, 000 and the number of adjacent node at each
node. Although the CNN strategy and the Dijkstra algo-
rithm have no number of removed packets (L) using large
buffer sizes of the nodes, as seen in the results of the small-
world networks (Fig.1) and the scale-free networks (Fig.2),
we confirmed that the numbers of the removed packets of
the CNN strategy and the Dijkstra algorithm become in-
creases if the buffer size of each node reduced. On the other
hand, using the information of the waiting time at the adja-
cent node, the proposed strategy and the DD strategy effec-
tively transmit the packets to their destinations without loss
of the packets. Using large buffer sizes of the nodes corre-
sponds to high spec routers in the real computer network.
Thus, from these results, the proposed strategy and the DD
strategy show high performance, even if the routers in the
computer networks have low performance.

The proposed strategy transmits more packets than the
DD strategy for the small-world networks and the scale-
free networks. A significant difference between the pro-
posed strategy and the DD strategy exists in the basic dy-
namics whether the routing strategy has the chaotic neu-
rodynamics or not. Using the chaotic neurodynamics pro-
duced by Eq.(2), the proposed strategy decentralized the
packets more effectively than the DD strategy for the small-
world networks and the scale-free networks, and this effi-
cient decentralization led to high performance of the pro-
posed strategy.

4. Conclusion
In this paper, to improve the performance of the rout-

ing strategy with chaotic neurodynamics[1], we introduced
the information of the waiting time to transmit the packet
at adjacent nodes to each node. Using additional informa-
tion, the performance is much improved, and the proposed
routing strategy has high performance for the small-world
networks and the scale-free networks comparing with the
previous strategy[1].

Furthermore, using the chaotic neurodynamics, the per-
formance of the proposed routing strategy becomes out-
standing when we compare its performance with that of
the decent-down hill routing strategy for the small-world
networks and the scale-free networks. However, we do not
clarify why the chaotic neurodynamics effectively decen-
tralizes the packet congestion in this paper. Thus, in the
future works, we consider analysis of the chaotic neurody-
namics for effectively decentralization of the packets. One
of the solvable methods is to use the method of surrogate
data which is an important analysis technique in the field
of nonlinear time-series analysis[11] to evaluate the signif-
icance of the chaotic neurodynamics.
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Mazda Foundation.

References
[1] T.Kimura and T.Ikeguchi, “A new algorithm for packet

routing problems using chaotic neurodynamics and its
surrogate analysis,” Neural computing and applications,
10.1007/s00521-007-0099-5, 2007.

[2] A.Arenas, A.D ı́az-Guilera, and R.Guimera, “Communica-
tion in networks with hierarchical branching,” PRL, vol.86,
3196, 2001.
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