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Abstract– In this paper, a model of a congestion control 

mechanism with queueing for a network running TCP is 
presented. The cases of one source and one link and two 
sources and one link are analyzed and the steady state 
behaviour is examined. 
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1. Introduction 

 
The Transmission Control Protocol (TCP), offers a 

reliable data transfer over the Internet. TCP provides an 
Additive Increase/Multiplicative Decrease (AIMD) 
mechanism according to which the source’s window 
increases (exponentially at slow-start and linearly at 
congestion avoidance) until packets are discarded and 
congestion is detected. Then, the source reduces the 
window value [1,2,3]. 

A number of models for congestion control have been 
introduced. Kelly et al. [4] proposed a framework 
comprising a primal algorithm for TCP rate control and a 
dual algorithm for the AQM scheme. Hespanha [5] 
presented a new stochastic hybrid network model, where 
transitions between discrete modes are triggered by 
stochastic events.  Recently, Shorten et al. [6] modelled 
communication networks drop-tail queueing and AIMD 
congestion control algorithms by employing the theory of 
nonnegative matrices. 

In this paper, we present a preliminary analysis of a 
discrete time model of a congestion control mechanism 
with queueing for a network running TCP. We examine 
the cases of one source and one link and two sources and 
one link models. We analyze the network and examine the 
steady state behaviour. 

 
 

2. One Source / One Link 
 

The network consists of a source and sink connected 
via a link (fig.1). The source transmits data at the 
maximum allowed rate at all times. Assume the queue is 
initially empty. The detection of a congestion event by the 
source is via a timeout, after which the source’s window is 
set to one. The link is managed by a Drop-Tail buffer, i.e. 
an arriving packet is discarded if the queue is full. The 
link is characterised by a parameter 1−N , which 

represents the total number of packets that can be 
transmitted per unit of time without congestion occurring.  

 

Figure 1: Network with 1 Source and 1 Link. 
 
 

Let the parameterN be given by the general equation: 

1)( +−+= kMAX QQPN                      (1) 

where P  represents the number of packets which the link 
can process per time unit. The time unit corresponds to the 
time needed for the source to send a window of packets. 

MAXQ  represents the maximum number of packets, which 

the queue can hold and kQ is the number of packets in the 

queue at the start of the k-th time interval.  

If NWk <  congestion does not occur and the queue 

empties unless the source times out early. 

If  NWk ≥  congestion occurs and the queue empties 

unless the source times out early. 
An early timeout takes place when, with the queue 

being full after one unit of time, the source does not wait 
long enough for the queue to empty, i.e. the source waits 

less than RTT
P

QMAX +





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Where RTT represents the total time needed for a packet 
to reach the sink and the corresponding acknowledgement 
to reach the source. 
     By setting the retransmission timeout: 

                RTT
P

Q
RTO MAX +





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+≥ 1                       (2) 

 early timeouts are not possible and  

                 0=kQ  for all k                                           (3) 

So in the case of the one source and one one link, the 

parameter N  is given by: 

            1++= MAXQPN                                      (4) 
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3. Two sources / One Link 
 

In the case of two sources and one link (fig.2), the same 
assumptions stand for the sources and link as in the case 
of one source and one link.  

 
 
3.1. Synchronized Sources with no delay 

 
When the two sources are synchronized with no delay, 

i.e. they start to transmit data at the same time, the 
congestion condition is given by: 

121 ++≥+ MAXkk QPWW                       (5) 

 
3.2. Synchronized Sources with Unit delay 
 

Assume that source one transmits k1W packets in the 

time interval ),[ 1+kk tt .  

At ktt =  either source one had timed out or it had 

received the last outstanding acknowledgement. Then: 
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     k2W  packets are transmitted in the time interval 

)1,[ +++ kkkk jtjt . Then: 
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Figure 2: Network with 2 Sources and 1 Link. 
 

Case 1 
If sources one and two congest: 

          MAXk QQ ='                                                          (8) 

and    =''kQ  
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But since source two congests, MAXk QQ =''  and 
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Where kh ( )1hk ≥  represents the additional units of 

time required, from kk jtt += , for source one to 

receive the final acknowledgement. 
 

Case 2 
If source one does not congest and source two congests 

then the expression for 1+kQ  is again (10). 

 
Case 3 
If source one congests and source two does not congest, 

by combining (7) and (8) we get 
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Case 4 
If neither source one not source two congest, sub case 

two of (6) gives: 
 

00' 1 <−+= PWQifQ kkk                           (12) 
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But then 
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Whereas from sub case one of (6): 

If  PjPWQ kkk <−+≤ 10                                     (15) 

Then 

     0)( =+ kk jtQ  

 
Which implies that 
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If   MAXkkk QPWQPj <−+≤ 1                             (16) 

Then 

PjWQjtQ kkkkk −+=+ )(                            (17) 

But 
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Which implies that 
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So, the network can be described by a 5-dimentional 

state with the window sizes k2k1 W,W , the threshold 

values k2k1 Th,Th and the queue length 1+kQ as the five 

components.  

The network also depends on four parameters, kj , 

RTT , MAXQ  and P . Assume that kj  and RTT  are 

constant, where 

               kk hjRTT +=                                       (20) 

Also assume  

PjQ kMAX )1( −≥                                  (21) 

so the queue does not empty every time. 

1+kQ evolves according to (10), (11), (14), (19), 

whereas the window and threshold evolution follows the 
next set of equations: 

 
Mode 1 – Slow Start 

If source i does not congest and ikik ThW ≤  
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Mode 2 – Congestion Avoidance 

If source i does not congest and ikik ThW >  
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where )1(,...,1,0,
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Mode 3 – Congestion Detection           

If source i does experience congestion 
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In the specific network:  
No congestion occurs when 

121 ++<+ PQWW MAXkk   

 
Source one congests when 

121 ++≥+ PQWW MAXkk   
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Source two congests when 
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And both sources congest when 
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3.3. Simulation Results 
 

MATLAB simulation for various combinations of 
initial window and threshold values and also for various 
values of RTT and jk establishes that the network 
possesses various steady state behaviours. There are cases 
where the network converges to one or multiple fixed 
points, but also to 2-cycles, 3-cycles, up to 7-cycles. 

Plotting Th1 and Th2 as functions of jk (fig.3a, fig.3b), 
while considering for the first the upper bound of possible 
threshold values and for the later the lower bound, enabled 
us to realize that Th1 is monotonically decreasing in jk 

whereas Th2 is monotonically increasing. 
 

 

 
Figure 3a: Evolution of Thresholds (W1(0)=1, W2(0)=2, 
Th1(0)=Th2(0)=41, Q=32, P=2, RTT=15, jk=[0,10]) 

 
 

 
Figure 3b: Evolution of Thresholds (W1(0)=1, W2(0)=3, 
Th1(0)=Th2(0)=31, Q=32, P=2, RTT=20, jk=[0,10]) 

 
 
 
 

 
4. Conclusions 

 
In the case of two sources and one link, the network, 

converges not only to fixed points, but also 2-cycle, 3-
cycle, up to 7-cycle. The thresholds, as a function of jk, 
possesses the property of monotonicity.  There are also 
indications that the bifurcation points could be simple 
fractions of RTT. 

Future work will involve further analysis of the 
simulation results in order to determine the bifurcation 
points and the cycle-order. Theoretical proof of those 
properties will be attempted. Furthermore, the extension 
of the analysis to a m-sources and n-links network is the 
ultimate goal.  
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