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Abstract—We give a stability condition for a two-
dimensional discrete-time binary cellular neural net-
works with an A-template having a simple type of
symmetric connection characterized by two indepen-
dent parameters α and β. The results are extension of
our previous one-dimensional cases [10],[11].

1. Introduction

One of the most fundamental problems of two-
dimensional cellular neural networks(CNN) is the sta-
bility problem and it has long been investigated from
the theoretical and practical points of view [1]-[4]. But
the problem is not completely solved even for binary
cellular neural networks[5]-[7].

Concerning the stability conditions of a 1-
dimensional discrete-time binary cellular neural net-
work, Sato et al.[7] gave the necessary and sufficient
conditions in terms of changeable sets and Nishi et
al.[8], [10], [11] and Hara et al.[9] recently gave the
necessary and sufficient conditions in terms of sys-
tem parameters for both no input case and nonzero
input case. On the other hand Thiran et al[6] studied
on 1-dimensional analog CNNs and gave the stabil-
ity conditions for them. So the stability problem for
a 1-dimensional systems with one-neighborhood con-
nection is considered to be solved .

In this paper we study on the stability for a
2-dimensional discrete-time binary cellular networks
(abbreviated as 2-D DBCNN) with an A-template
having a simple type of symmetric connection char-
acterized by two independent parameters α and β (see
Eq.(1) below). We will give a necessary and sufficient
condition for this type of the 2D DBCNNs to be stable.
We study only no input case. The method used is re-
semble to the one used in the one-dimensional cases[8]–
[9].

2. Preliminaries

Let x(k) = [xij(k)] be an n× n binary state matrix
of a 2-D DBCNN S at time k. The behavior of a 2-
D DBCNN we consider in this paper can generally be
described by the equation:

xij(k + 1) = sgn [αxi,j(k) + βxi−1,j(k)
+βxi+1,j(k) + βxi,j−1(k) + βxi,j+1(k) + θ](1)

(i, j = 1, 2, · · · , n; k = 0, 1, 2, · · ·)

where θ is the threshold value. Thus the cell (i, j)
has a self-feedback with the magnitude α and has con-
nections only with neighboring four states (i − 1, j),
(i + 1, j), (i, j − 1) and (i, j + 1) where the connec-
tion coefficients are the same value, β 1. In particular
x(0) is the initial state matrix, which can be used as
another input data in many applications.

When we calculate xij(k + 1) by Eq.(1), we have to
define the boundary values x0,j(k) , xn+1,j(k) , xi,0(k),
and xi,n+1(k) for the state matrix. In this paper we
assume the fixed boundary, which means that x0,j(k),
xn+1,j(k), xi,0(k) and xi,n+1(k) are binary constants
independent of k.
Definition 1: A 2-D DBCNN S is said to be stable,
if no limit cycle occur for any x(0), any boundary con-
ditions on x, and any n. A 2-D DBCNN being not
stable are said to be unstable.

Based on the Definition 1, we consider the problem:
Problem: Prescribed coefficients α, β and θ, is the
system S stable or not?
In this paper we give the answer to above problem.

3. Main results on the stability

We first describe the main results in this paper.
1In the case of cellular automata the “sgn” function in Eq.(1)

should be replaced with an arbitrary logic function of x(k).
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Figure 1: Stable and unstable regions

Theorem 1: The system S described by Eq.(1) is
stable if and only if one of the following conditions i)
and ii) holds:
i) α > 4|β| − θ
ii) α > 2|β| − θ and α > θ

The stable regions are shown by the shaded area in
Fig. 1, where the vetrical axis means α-axis and the
horizontal axis means the β-axis. On the other hand
the white area in Fig. 1shows unstable region.

The proof of Theorem 1 is done by proving the fol-
lowing two theorems.
Theorem 2: The system S described by Eq.(1) is
stable if one of the following conditions i) and ii) in
Theorem 1 holds.

i) α > 4|β| − θ
ii) α > 2|β| − θ and α > θ
Theorem 3: The system S described by Eq.(1) is
unstable if one of the following conditions iii) and iv)
in Theorem 1 holds.

iii) α < 2|β| − θ
iv) α < 4|β| − θ and α < θ

The followings are the proofs of Theorems 2 and 3.
The proof is basically similar to but is more compli-
cated than those in [8], [9]

4. Proof of theorems

In the following proof we assume that β ≥ 0 but the
case of β < 0 can be treated quite similarly. So we
write |β| instead of β so that the result is valid for the
case of β < 0. We also assume that θ ≥ 0 without loss
of generality.

4.1. Changeable pattern and invariant pattern

The 5-tuple (φ ≡) (xi,j(k), xi−1,j(k), xi+1,j(k),
xi,j−1(k), xi,j+1(k)) takes one of 32 patterns such
as (−,−,−,−,−), (−,−,−,−,+) and (+,+, +, +,+),
where “+” and “−” mean +1 and −1, respectively.

Assume that the parameters α, β and θ are given.
Then for some of these 5-tuples xij(k + 1) changes
from xij(k) and for other 5-tuples xij(k + 1) remains
the same as xij(k).
Definition 2: We call the former 5-tuples “changeable
patterns” and the latter ones “invariant patterns”.

Due to the symmetrical structure of CNN we con-
sider, it depends only on the value (+1 or −1) of the
center cell (i, j) and on the number of positive (or neg-
ative) value of four adjacent cells, (i− 1, j), (i + 1, j),
(i, j−1) and (i, j+j), Let Np(resp., Nn; Np+Nn = 4)
denote the number of positive (resp., negative) adja-
cent cells.

4.2. α- and ᾱ-terms

We see from Eq.(1) that the behavior of the system
can be determined only by the values of ±α±β± β±
β ± β + θ.
Definition 3: We call the terms +α±β±β±β±β+θ
α-terms and −α±β±β±β±β+θ ᾱ-terms respectively.

4.3. Conditions A-i and Ā-j

We define the following six conditions for the α-
terms and also six for ᾱ-terms as follows:
Condition A-5: +α + 4|β|+ θ < 0

Condition A-4: +α + 2|β|+ θ < 0 < +α + 4|β|+ θ

Condition A-3: +α + θ < 0 < +α + 2|β|+ θ

Condition A-2: +α− 2|β|+ θ < 0 < +α + θ

Condition A-1: +α− 4|β|+ θ < 0 < +α− 2|β|+ θ

Condition A-0: 0 < +α− 4|β|+ θ

Similarly Conditions Ā-j (j = 0, 1, · · · , 5) are defined
as follows:
Condition Ā-5: −α + 4|β|+ θ < 0

Condition Ā-4: −α + 2|β|+ θ < 0 < −α + 4|β|+ θ

Condition Ā-3: −α + θ < 0 < −α + 2|β|+ θ

Condition Ā-2: −α− 2|β|+ θ < 0 < −α + θ

Condition Ā-1: −α− 4|β|+ θ < 0 < −α− 2|β|+ θ

Condition Ā-0: 0 < −α + 4|β|+ θ

These conditions are restated as follows: Assume that
xij(k) = 1. Then

(a.1) Condition A-0 means that xij(k +1) = 1 inde-
pendent of Np, which means that there is no change-
able pattern of the type (+, *, *, *, *),

(a.2) Condition A-i (i = 1, · · · , 4) means that xij(k+
1) = 1 if Np ≥ i and xij(k + 1) = −1 if Np < i, i.e.,
(+, ∗, ∗, ∗, ∗) is a changeable pattern if Np < i,

(a.3) Condition A-5 means that xij(k + 1) = −1
independent of Np, which means all 5-tuples of the
type (+, *, *, *, *) are changeable patterns.

Similarly assume that xij(k) = −1. Then
(b.1) Condition Ā-0 means that xij(k + 1) = 1 in-

dependent of Np.
(b.2) Condition Ā-j (j = 1, · · · , 4) means that

xij(k + 1) = 1 if Np ≥ j and xij(k + 1) = −1 if
Np < j, and
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(b.3) Condition Ā-5 means that xij(k + 1) = −1
independent of Np.

Examples of patterns for each condition are illus-
trated in Figs. 2 and 3.
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Figure 2 α-terms Figure 3 ᾱ-terms

5. Investigation of 36 combinations

Previously we defined Conditions A-i (i =
0, 1, . . . , 5) for α-terms and Conditions Ā-j(j =
0, 1, . . . , 5) for ᾱ-terms. To investigate the stability
conditions of the system S it is sufficient to investigate
all 36 combinations of Conditions A-i and Conditions
Ā-j (i, j = 0, 1, . . . , 5). We indeed examined these 36
combinations in detail and verified which combination
is stable. But to write this process is very tedious.
In the following we investigate heuristically only four
cases, from which we can derive the necessary and suf-
ficient conditions for the stability.

Before that we should note the following:
Remark 1: If a 5-tuple φ is a changeable pattern on
Condition A-i0, then it is also a changeable pattern on
Conditions A-i (i ≤ i0). Similarly if a 5-tuple φ is a
changeable pattern on Condition Ā-j0, then it is also
a changeable pattern on Conditions Ā-j (j ≥ j0).

5.1. Stable regions

We first consider:
Case 1: α > 4|β| − θ

We see that Condition A-0 holds in this case. There-
fore any α-term is invariant pattern (See Fig. 2). In
other words if xij(k) = 1, then xij(k + 1) = 1.

Even if xij(k) changes from −1 to 1 (See Fig.3), we
see that any limit cycle does not happen in this case.

Case 2: α > 2|β| − θ and α > θ
These inequalities show that Conditions A-1 holds in
α-terms, Condition Ā-3 holds in ᾱ-terms.

We verified which combination is stable from all 36
combinations carefully. As we cannot write all cases
for the lack of space , we will state only key points
briefly.

We see that changeable patterns are only a positive
isolated point (See Fig.4) in α-terms.

Similarly there are a negative isolated point (Fig.5)
and a negative end point(Fig.6) in ᾱ-terms.

In the following ‘positive’(resp., ‘negative’) is abbre-
viated to ‘p-’(resp.,‘n-’).

−
− + −

−

+
+ − +

+

Figure 4 p-isolated point Figure 5 n-isolated point

+
− − +

+

−
− − +

+

Figure 6 n-end point Figure 7 n-corner point

When p-isolated points and n-isolated points are ar-
ranged checkerwise, each point may change between
+1 and -1 alternatively. But the System can not have
Limit Cycles in fixed boundary conditions in which the
boundary values are constant +1 or -1.

Considering the size of 2×2 as shown Fig.8, each iso-
lated point reverses to opposite state at each corner.
The point that became new state never returns i.e. sta-
ble, because n-isolated point (resp., p-isolated point)
becomes p-point (resp., n-point) which has Np ≥ 1
(resp., Nn ≥ 1). That is, new point is not isolated
point.

Supposing the case of bigger size, the states of cells
become fixed gradually from periferal cells, and con-
verged finaly.

− +

− + − +
+ − + −

+ −

− +

− − + +
+ + − −

+ −

(a) (b)
Figure 8 Example 1

From the above we conclude that Theorem 2 in Sec-
tion 3 holds.

5.2. Unstable regions

We next consider:
Case 3: Region α < 2|β| − θ
This inequality shows that Condition A-2 in the α-
terms (See Fig.2) and Ā-3 in the ᾱ-terms (See Fig.3).
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The changeable patterns are p-isolated point (Fig.4)
and p-end point in the α-terms, on the otherhand n-
isolated point (Fig.5) and n-end point (Fig.6) in the
ᾱ-terms.

Considering the size of 2×2 as shown Fig.9(a), each
end point changes states at each corner. The end
points that became new states changes in turn between
(a) and (b) of Fig.9.

− +

+ − + −
− + − +

+ −

− +

+ + − −
− − + +

+ −

(a) (b)
Figure 9 Example 2

Case 4: Region α < 4|β| − θ and α < θ
This inequalities shows that A-1 holds in the α-terms
and Ā-2 holds in the ᾱ-terms.

Therfore we see the changeable pattern is only p-
isolated point (See Fig.4) in the α-terms. In the
ᾱ-terms, changeable set has three changeable pat-
terns(See Fig.5,6,7).

Considering the size of 2×2 as shown Fig.10, each n-
corner point changes to a p-isolated point at each cor-
ner, and each p-isolated point changes to an n-corner
point.

On the whole pattern, inner 4 points change in turn
between (a) and (b) of Fig.10.

− −
− − + −
− + − −

− −

− −
− + − −
− − + −

− −

(a) (b)
Fig.10 Example 3

From the above we conclude that Theorem 3 in Sec-
tion 3 holds.

6. Conclusion

We gave the necessary and sufficient conditions for
the stability of 2-D DBCNN without input.
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