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Abstract—We propose the extension of the classical
framework of Cellular Nonlinear Networks (CNN) to in-
corporate adaptivity of the cells. Adaptivity means that
coupling template coefficients can evolve over time accord-
ing to some specified rule. Here, the rule is described in
terms of a differential equation for each template coeffi-
cient. It is proposed that this dynamics can be obtained
from the gradient flow of an objective function imposed on
the network. The extension is exemplified for a signal pro-
cessing application, namely the principal subspace analysis
(PSA). The application illustrates a top-down approach to
self-organization from a global objective to local process-
ing and adaptation rules.

1. Introduction

The CNN framework [1] follows the paradigm, observed
in most biological as well as human-made multi-agent sys-
tems, that each agent has limited information about the
state of the whole collective it is a member of. The agent
can sense and interact within a region confined to its vicin-
ity. This appealing concept of locality triggered and holds
promise to trigger novel, massive parallel, fault-tolerant en-
gineering architectures and to enhance our mathematical
understanding of self-organization. Many of these multi-
agent systems furthermore also exhibit adaptivity. That is,
the agent can choose from a finite or infinite set of strate-
gies, that modulate its states and interactions. The agent
chooses its strategy according to some local criterion that
depends on its own state and on the state of its local en-
vironment. Examples thereof are, cell differentiation in
multicellular organisms, local routing of network traffic,
formation change in fish schools and flocks, spike timing
dependent plasticity in neuron ensembles, etc. The obser-
vation suggests an extension of the classical CNN frame-
work to incorporate this adaptivity. Due to CNN’s regular
structure it is particularly amenable to mathematical analy-
sis and thus attractive as a model system to study the effects
of such adaptive agents. Furthermore, this work provides
evidence that this extension also has implications for the
design of engineering systems.

The remaining part of the work proceeds as follows. The
extension to the classical CNN framework and the nec-
essary notations are introduced in Section 2. Section 3
discusses the considered engineering application, namely

principal subspace analysis (PSA). In section 4 we propose
the adaptive CNN for PSA, while Section 5 draws the con-
clusions.

2. The Adaptive CNN

The evolution of an adaptive CNN is governed by two
sets of equations, i.e., the processing equations and the
adaptation equations. The processing equations represent
the standard1 CNN dynamics for the celli

ẋi = −αxi +

∑

j∈N(i)

Ai j y j +

∑

j∈N(i)

Bi ju j +zi with yi = f (xi),

(1)
wherei is a linear position index over an arbitrary multi-
dimensional array,N(i) is the set of linear indices associ-
ated with the neighboring cells of celli (and itself),α ≥ 0 is
the self-feedback gain andzi the bias of the celli. The func-
tion yi = f (xi) is the piecewise linear saturation function.
The adaptation equations for the coupling connections to
cell i can take the general form

Ȧi j = gi j (AiN(i), yN(i), uN(i), zi)

Ḃi j = hi j (BiN(i), yN(i), uN(i), zi),
(2)

with yN(i) = ∪ j∈N(i)y j , that is the set of output signals
of cells in the neighborhoodN(i) of cell i. Similarly,
AiN(i) = ∪ j∈N(i)Ai j refers to the set of coefficients associ-
ated with the coupling of the celli with its neighbors with
positionsN(i). Analogous definitions apply touN(i) and
BiN(i). The functionsgi j and hi j are undetermined func-
tions, that can depend on the position (i, j) of the coupling
coefficient. With respect to the daunting degrees of free-
dom introduced by spatial variant adaptation equations, the
case of spatial invariant adaptation equations is more ap-
pealing. If we compare this spatial invariant case to the
classical spatial invariant CNN framework, it is recognized
that the homogeneity has been shifted to a second level. In
other words, a spatialinvariant adaptation dynamics con-
trols the templatesAi j andBi j and in general will result in
spatialvariant templates. Except for boundary effects, the
subsequent application considers spatial invariant adapta-
tion dynamics. The adaptation equations (2) are general

1In what follows we develop the adaptive CNN in terms of the standard
CNN [1, p. 16], but it should be clear that the same extension can be made
to a more general class of CNNs as defined in [1, p. 5]
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but very unspecific. The main part of this work is devoted
to obtain an explicit form of these equations for a particular
problem.

Note, that in contrast to approaches for template learning
of classical CNNs [2], with (2) we impose the constraint
that the adaptation dynamics can only take into account lo-
cal information available to the individual cell. Further-
more, we emphasize the online aspect of the adaptation,
where in general templates through (2) and states through
(1) co-evolve. Nevertheless, to justify the distinction be-
tween processing and adaptation equations, the two equa-
tion sets should have different time scales, i.e., the time
constant for the adaptation is assumed to be larger than that
of the processing.

Most of this work will deal with two-dimensional CNN
arrays. In this case the linear position index is chosen to
be the columns-wise enumeration of the two-dimensional
array. That is, the (β, δ)-position in aN×L two-dimensional
array is associated with the linear indexi by i = (δ−1)N+β.
We subsequently refer to the column indexδ as the stage
number of the array. For later purposes let us define two
classes of matrices.

Definition 1: A m× n matrix Gi j with m ≤ n belongs to
the class of band matricesBm×n(k1, k2) with bandwidthb =
k1 + k2 + 1 if Gi j = 0 for j < i − k1 or j > i + k2 with
k1, k2 ≥ 0.

Definition 2: The class of tridiagonal square matricesTn×n

is defined asTn×n
= B

n×n(1, 1).

Interpreting the coupling coefficientsAi j and Bi j as el-
ements of matrices, we can rewrite (1) in matrix notation
as

ẋ = −αx + Ay + Bu + z with yi = f (xi), (3)

where for j < N(i) the elements ofAi j with i = 1, . . . ,NL,
j = 1, . . . ,NL were set to zero. The same holds forBi j .
Assuming nearest neighbor coupling and von Neumann or
Dirichlet boundary conditions the matricesA andB have
block-tridiagonal structure. This is subsequently exempli-
fied forA

A =













































C1 N1 0 0 · · · 0
P2 C2 N2 0 · · · 0
0 P3 C3 N3 · · · 0
...

...

0 0 · · · 0 PL CL













































, (4)

where the submatricesPk, Ck andNk refer to the coupling
matrices at stagek with the previous (k− 1), the current (k)
and the next (k + 1) stage, respectively. All of those sub-
matrices have once again tridiagonal structures, assuming
von Neumann or Dirichlet boundary conditions. Thus, for
a N × L two-dimensional array we havePk ∈ T

N×N with
k = 2, . . . , L, Ck ∈ T

N×N with k = 1, . . . , L andNk ∈ T
N×N

with k = 1, . . . , L − 1. For the case of periodic boundary
conditions the Töplitz-like structure of (4) and its submatri-
ces has to be replaced by the corresponding circulant-like
structure.

3. Application to PSA

PSA and its variant principal component analysis (PCA)
[3] are widely used linear signal processing operations for
signal and image compression, data pre-processing, noise
removal, feature extraction, etc. Roughly, the PSA opera-
tion involves the projection of a multivariate random pro-
cessu = (u1, . . . , uN)T to a lowerM-dimensional subspace,
spanned by those eigenvectorsvk of the covariance matrix
Φ ≡ E(uuT ), that are associated with theM largest eigen-
values ofΦ.

3.1. Processing and Adaptation

Linear feedforward neural networks have been used to
implement PSA, where the eigenvector decomposition of
Φ is performed without a direct estimation ofΦ. The pro-
posed network is based on two seminal works. Firstly on
[4], that introduced a bi-directional symmetric coupling in
a feedforward neural network. Secondly on [5], that ex-
tended the isospectral Toda flow to solve the PSA prob-
lem. We extend these works by considering a fully recur-
sive system and allow only for local coupling between all
cells. Furthermore, the obtained adaptation dynamics does
not involve any approximation. With that we propose the
following processing structure

ẋ1 = −αx1 +W1x2 + α
2u

ẋ2 = −αx2 +W2x3 +WT
1 x1

...

ẋL = −αxL +WT
L−1xL−1,

(5)

with WT
1 ∈ B

M×N(0, l) with l ≥ N−M andWk ∈ T
M×M with

k = 2, . . . , L − 1. The constraint onl guarantees full rank
of W1. The network topology of (5) is indicated in Fig. 1.
According to the above time-scale considerations, we as-
sume now that the processing equations (5) are in steady
state. Furthermore, we assume stability of (5). Thus, the
network instantaneously maps the process sampleu to a
lower M-dimensional encoding state. This state isx2 and
the encoder is thus the matrixE : u 7→ x2. Let us further
define the steady state propagatorsPk : u 7→ xk. They can
be written as

Pk = α
−(k−2)S−1

k WT
k−1 · · ·S

−1
2 WT

1 S−1
1 , (6)

for k = 2, . . . , L, with the backward recursion for

Sj−1 = I − α−2W j−1S−1
j WT

j−1, (7)

with j = 2, . . . , L andSL = I . For P2 = E we find the
alternative form

P2 = (S2 − α
−2WT

1 W1)−1WT
1 . (8)

We can now define the global objective of the network as

min
W1,...,WL−1

J(W1, . . . ,WL−1) (9)
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u1

u2

u3

uN

Figure 1: General topology of the proposedL-stage locally
coupled PSA network for arbitraryN andM = N − 1.

with
J(W1, . . . ,WL−1) ≡ 1

2 E ||u −W1Eu||22. (10)

The vectorν ≡ W1Eu gives the network reconstruction
of u from the statex2. Thus,W1 is the decoder matrix.
The solution to (9) gives the network configuration result-
ing in an encodingx2 that minimizes the expectedℓ2-norm
betweenu and its reconstructionν. Thus inevitable, the
subspace spanned by the optimalx2 is identical to the PSA
subspace. Computing the gradient of (10) with respect to
Wk we obtain the exact gradient flow

Ẇ1 = JUPT
2

Ẇk = α
−1PkUPT

k+1 for k = 2, . . . , L − 1,
(11)

with

U ≡ 2Φ −W1EΦ −ΦW1E (12)

J ≡ I + α−2W1E. (13)

For EW1 → I one arrives at the simplified flow by replac-
ing U → Ū ≡ Φ −W1EΦ in (11). The resulting dynamics
can be associated with the flow in [5]. These averaged dy-
namics (11), involving the covariance matrixΦ, can be ap-
proximated through stochastic approximation [6, pp. 144]
Φ ≈ uuT . Assuming positive definiteness ofJ in (11), that
can be ensured by an appropriate choice ofα, J can be re-
placed byI without changing the stable equilibrium points
of the dynamics (11). With this we arrive at the simple
stochastic learning dynamics

Ẇ1 = µ(u − ν)xT
2 + µu(x2 − ξ2)T

Ẇk = γ(xk − ξk)x
T
k+1 + γxk(xk+1 − ξk+1)

T ,
(14)

for k = 2, . . . , L − 1 with ξk ≡ Pkν andµ denotes a small
adaptation rate consistent with the stochastic approxima-
tion andγ ≡ µα−1. The correspond stochastic dynamics
for the approximate flow with̄U reads

Ẇ1 = µ(u − ν)xT
2

Ẇk = γ(xk − ξk)x
T
k+1.

(15)

ν ξ2 ξLξ3

W1 W2 WL−1

W1 W2 WL−1

u

Figure 2: Topology corresponding to (14) with an signal
propagation layer and a reconstruction propagation layer.

L

M

xk+1

ξk+1

xk

ξk

Figure 3: Neighborhood of a single cell, that is required to
compute the learning dynamics (14) for the coupling coef-
ficients of the cell.

Both sets of equations have an interesting structure. They
involve the difference between the inputu and the net-
work reconstructionν and correspondingly the difference
between the network statesxk and some novel statesξk.
From their definition we see, that the latter states would
arise if we instead ofu apply ν to the network. The key
to construct a local adaptation dynamics is to introduce a
second, overlayed network in addition to the existing pro-
cessing network. The resulting topology for (14) is shown
in Fig. 2. The neighborhood for a single cell in this two-
layered network for (14) is indicated in Fig. 3. For the sim-
plified dynamics (15) the number of neighbors reduces to
four.

3.2. Stability Analysis

Here we investigate the stability of the nonlinear matrix
differential equation (11) and its approximation usingŪ,
that describe the average dynamics of (14) and (15), re-
spectively. The dynamics (11) performs a exact gradient
descend on the positive definite objective (10). Thus, the
objective function can be utilized as a Lyapunov function
if we can show that the time-derivative of (10) along the
trajectoryWk(t) is always negative. This holds true for all
gradient systems and in particular we have

∂J
∂t
= −

L−1
∑

k=1

Tr













(

∂Wk

∂t

)T
∂Wk

∂t













< 0. (16)

In the following we show that (10) is also a local Lya-
punov function for the simplified matrix flow with̄U =
U−Φ(I−W1E). The local region in state space, where (10)
is a Lyapunov function for the simplified flow is defined
asW ≡ {{WT

1 ∈ B
M×N(0, l),W2 ∈ T

M×M , . . . ,WL−1 ∈

T
M×M} | EW1 = I }, with l ≥ N − M. For this to make
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sense we have to show that a trajectory starting in the set
W will always stay within that set. Let us define the trajec-
tory as the set of coupling matrices that are solutions to the
approximate flow asW(t) ≡ {WT

1 (t) ∈ BM×N(0, l),W2(t) ∈
T

M×M , . . . ,WL−1(t) ∈ TM×M}with t ∈ [0,∞) andl ≥ N−M.
After some algebra one obtains that

d
dt

[E(t)W1(t)] = 0 for W(0) ∈ W, (17)

Thus, withW(0) ∈ W the trajectory stay within that region
W(t) ∈ W for all timest. For the positive definite (10) to
be a local Lyapunov function inW it remains to show that
it decays along the trajectory. We find that

∂J
∂t
= −Tr

[

(JŪET )T(JŪET )
]

< 0 for W(t) ∈ W.

4. The Subspace CNN

We now interpret the obtained dynamical system of Sec-
tion 3 in term of the adaptive CNN framework. The pro-
posed adaptive CNN has two planar layers that are cou-
pled. One layer propagates the input signalu, while the
other layer propagates the reconstructed signalν. Both lay-
ers have the identical coupling coefficients. Thus, with the
corresponding feedback matrix

A =













































−αI W 1 0 0 · · · 0
WT

1 −αI W 2 0 · · · 0
0 WT

2 −αI W 3 · · · 0
...

...

0 0 · · · 0 WT
L−1 −αI













































, (18)

we obtain the processing equations as

ẋ = −αx + Ax + Bū, x(0) = x0

ξ̇ = −αξ + Aξ + Bν̄, ξ(0) = ξ0,
(19)

with x = ( xT
1 , x

T
2 , . . . , x

T
L )T andξ = ( ξT

1 , ξ
T
2 , . . . , ξ

T
L )T and

with ū = ( uT , 0 )T, ν̄ = ( νT , 0 )T, ν = W1x2 where the
vector0 is of dimension 1× M(L − 1). As PSA is a linear
transformation, the resulting cellular network (19) is linear.
Alternatively, it can be interpreted as a CNN operated in the
linear region ofyi = f (xi). Furthermore we have

B =
(

α2I 0
0 0

)

, (20)

whereI is theN × N unit matrix. Concerning the adapta-
tion equations for the coupling coefficients, we observe that
for the proposed processing topology of Fig. 1 for stage
1 < k < L, each cell has to adapt three coupling coeffi-
cients (apart from boundary effects). These are the cou-
pling coefficient toward the next stage. For the linear in-
dexing scheme, the three indices for the neighboring cell in
the consecutive stage can be obtained by adding the stage
dimensionM, M − 1 andM + 1 to the linear index posi-
tion of the cell that we consider (except boundary effects).

Thus, in addition to the signal and reconstruction propaga-
tion equation (19) we obtain the nonlinear coupling adap-
tation equation for celli in the signal propagation layer as

Ȧi j = γ(xi − ξi)x j + γxi(x j − ξ j), (21)

with j ∈ N(i) = {i+M−1, i+M, i+M+1}. In the same way
the coupling adaptation equation based on the approximate
flow (15) reads

Ȧi j = γ(xi − ξi)x j, (22)

with j ∈ N(i) = {i + M − 1, i + M, i + M + 1}. For the
stagek = 1 and thus fori ≤ N the dynamics arėAi j =

µ(ūi−ν̄i)x j+µūi(x j−ξ j) andȦi j = µ(ūi−ν̄i)x j with j ∈ N(i),
for (14) and (15), respectively. The neighbor positionsN(i)
for i ≤ N of sizel+1 can be read off fromWT

1 ∈ B
M×N(0, l).

5. Conclusion

We proposed an extension of the classical CNN frame-
work to allow for adaptivity of the processing cell and
showed a first application of such a network to PSA. The
local adaptation rules are derived from a gradient flow on
a global objective that is a function of all states and in-
puts of the network. The new framework can serve as a
model system to understand self-organizing processes and
to design novel robust, fault-tolerant engineering systems.
Interpreting a CNN as a lattice approximation of a con-
tinuous medium, the adaptive extension would correspond
to asmartmedium, that would change its spatial inhomo-
geneity according to external stimuli. Open issues involve
the design of nonconservative local tests for stability of the
processing equations in the discussed application and in
adaptive CNNs in general.
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