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Abstract—We propose the extension of the classicaprincipal subspace analysis (PSA). In section 4 we propose
framework of Cellular Nonlinear Networks (CNN) to in- the adaptive CNN for PSA, while Section 5 draws the con-
corporate adaptivity of the cells. Adaptivity means thatlusions.
coupling template caBcients can evolve over time accord-
ing to some specified rule. Here, the rule is described i The Adaptive CNN
terms of a dfiferential equation for each template fioe
cient. It is proposed that this dynamics can be obtained The evolution of an adaptive CNN is governed by two
from the gradient flow of an objective function imposed orsets of equations, i.e., the processing equations and the
the network. The extension is exemplified for a signal proadaptation equations. The processing equations represent
cessing application, namely the principal subspace aisalyshe standardCNN dynamics for the cell
(PSA). The application illustrates a top-down approach to
self-organization from a global objective to local progessXi = —aXi + Z Aijyj + Z Bijuj+z with y = f(x),

ing and adaptation rules. jen() jen() "
) wherei is a linear position index over an arbitrary multi-
1. Introduction dimensional arrayN(i) is the set of linear indices associ-

. ted with the neighboring cells of céfand itself),« > 0 is
The CNN framework [1] follows the paradigm, observe he self-feedback gain arzdthe bias of the ceil The func-

in most biological as well as human-made multi-agent sy$:

tems, that each agent has limited information about t on yi = f(X‘.) Is the piecewise linear saturation fung:hon.
R e adaptation equations for the coupling connections to
state of the whole collective it is a member of. The agen

) L . : .~ celli can take the general form
can sense and interact within a region confined to its vicin-

ity. This appealing concept of locality triggered and holds A”- = 0ij (AinG)> YNG)> UnG)s Z)

promise to trigger novel, massive parallel, fault-toléem B = h (B e Ve Unr. 2 (2)
gineering architectures and to enhance our mathematical i = i (B Yo, Uno, 2):

understanding of self-organization. Many of these multiwith yyq = Ujenq)y;, that is the set of output signals
agent systems furthermore also exhibit adaptivity. That i®f cells in the neighborhoodv(i) of cell i. Similarly,

the agent can choose from a finite or infinite set of stratédyg) = Ujen()Aij refers to the set of cdiécients associ-
gies, that modulate its states and interactions. The ageated with the coupling of the cellwith its neighbors with
chooses its strategy according to some local criterion thpbsitionsA/(i). Analogous definitions apply tayg and
depends on its own state and on the state of its local eByg. The functionsg;; and hj; are undetermined func-
vironment. Examples thereof are, cellfdrentiation in tions, that can depend on the positionj) of the coupling
multicellular organisms, local routing of network fiia, codficient. With respect to the daunting degrees of free-
formation change in fish schools and flocks, spike timingom introduced by spatial variant adaptation equatiors, th
dependent plasticity in neuron ensembles, etc. The obsease of spatial invariant adaptation equations is more ap-
vation suggests an extension of the classical CNN frampealing. If we compare this spatial invariant case to the
work to incorporate this adaptivity. Due to CNN’s regularclassical spatial invariant CNN framework, it is recoguize
structure it is particularly amenable to mathematicalgnal that the homogeneity has been shifted to a second level. In
sis and thus attractive as a model system to studyfthets other words, a spatiahvariant adaptation dynamics con-
of such adaptive agents. Furthermore, this work providdsols the templatesy; andB;; and in general will result in
evidence that this extension also has implications for thgpatialvarianttemplates. Except for boundarffects, the
design of engineering systems. subsequent application considers spatial invariant adapt
The remaining part of the work proceeds as follows. Théon dynamics. The adaptation equations (2) are general
extension to.the classlcal CNN f_ramewqu and the _ne"_ Lin what follows we develop the adaptive CNN in terms of thedtad
essary notations are introduced in Section 2. Section @ [1, p. 16], but it should be clear that the same extensionbe made
discusses the considered engineering application, namey more general class of CNNs as defined in [1, p. 5]
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but very unspecific. The main part of this work is devote®. Application to PSA

to obtain an explicit form of these equations for a particula

problem. PSA and its variant principal component analysis (PCA)
Note, that in contrast to approaches for template learnirlg] &€ widely used linear signal processing operations for

of classical CNNs [2], with (2) we impose the constrainf'gnal and image compression, data pre-processing, noise

that the adaptation dynamics can only take into account I6€moval, feature extraction, etc. Roughly, the PSA opera-

cal information available to the individual cell. Further-tion involves the projection of a multivariate random pro-

more, we emphasize the online aspect of the adaptatigiSs = (Uz.....un)" to alowerM-dimensional subspace,

where in general templates through (2) and states throu§Ranned by those eigenvecteksof the covariance matrix

(1) co-evolve. Nevertheless, to justify the distinction be® = E(uu’), that are associated with thé largest eigen-

tween processing and adaptation equations, the two eqlalues of®.

tion sets should have fiierent time scales, i.e., the time ) )

constant for the adaptation is assumed to be larger than ti#at- Processing and Adaptation

of the processing. _ _ _ Linear feedforward neural networks have been used to
Most of this work will deal with two-dimensional CNN implement PSA, where the eigenvector decomposition of
arrays. In this case the linear position index is chosen g jg performed without a direct estimation @ The pro-
be the columns-wise enumeration of the two-dimensiongbsed network is based on two seminal works. Firstly on
array. Thatis, thed 6)-positionin aNxL two-dimensional 4] that introduced a bi-directional symmetric couplimg i
array is associated with the linearindéxy i = (6—1)N+8. 3 feedforward neural network. Secondly on [5], that ex-
We subsequently refer to the column indeas the stage tended the isospectral Toda flow to solve the PSA prob-
number of the array. For later purposes let us define twam \we extend these works by considering a fully recur-

classes of matrices. sive system and allow only for local coupling between all
Definition 1: A mx n matrix G;; with m < n belongs to cells. Furthermore, the obtained adaptation dynamics does
the class of band matric@™"(ky, k») with bandwidthb =  not involve any approximation. With that we propose the
ki +ko+1if Gj = 0forj <i—-kyorj>i+k with following processing structure
ki, ko > 0. . 2
Definition 2: The class of tridiagonal square matriGe&s" X1 = —axy+ Waxz + a’u
is defined ag™" = B™"(1, 1). X2 = —aX + Waxz + WIxg

Interpreting the coupling cdkcientsA;; and B;; as el- . )
ements of matrices, we can rewrite (1) in matrix notation :
as XL = —aX, + W-||_—_]_XL—1’

X=—-ax+Ay +Bu+z with vy = f(x), 3)

o " with WT € BMN(0, 1) with | > N—M andW, e T™M with
where forj ¢ N(i) the elements of; withi =1,....NL, | = 2 " L - 1. The constraint ohguarantees full rank
j = 1....NL were set to zero. The same holds ).  of w,. The network topology of (5) is indicated in Fig. 1.
Assuming nearest neighbor coupling and von Neumann @{ccording to the above time-scale considerations, we as-
Dirichlet boundary conditions the matricésandB have gyme now that the processing equations (5) are in steady
block-tridiagonal structure. This is subsequently exémplstate. Furthermore, we assume stability of (5). Thus, the
fied forA network instantaneously maps the process sampite a
lower M-dimensional encoding state. This stateisand

Ct M 00 -0 the encoder is thus the matti: u — x». Let us further

P, C2 N O --- O ]

0 P; C3 N3 --- 0 define the steady state propagateys u — xx. They can
A=l e (4)  be written as

0 0 - 0 R C Pc=a CASIWE - S WI S (6)

where the submatricd%, Cy andN refer to the coupling fork=2....,L, with the backward recursion for
matrices at staglewith the previousK— 1), the currentk) o “2p s T

and the nextK + 1) stage, respectively. All of those sub- S =1 =@ WiaS;pWi, )
matrices have once _again tridiagonal structures, assumipg, j=2..LandS = 1. ForP, = E we find the
von Neumann or Dirichlet boundary conditions. Thus, fokiarnative form

aN x L two-dimensional array we haw € TN*N with

k=2,...,L,Ce e TN with k= 1,...,L andNy € TNN Py = (S — @ 2WIWy) W1, (8)
with k = 1,...,L — 1. For the case of periodic boundary

conditions the Toplitz-like structure of (4) and its sutimra We can now define the global objective of the network as

ces has to be replaced by the corresponding circulant-like )
structure. mlvr\} _1‘](W1’ W) 9)

Lseees L
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Figure 1: General topology of the propodedtage locally Xic+1
coupled PSA network for arbitrafy andM = N — 1. ° °
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Figure 3: Neighborhood of a single cell, that is required to

The vectory = W;Eu gives the network reconstruction compute the learning dynamics (14) for the coupling coef-
of u from the statex,. Thus, W is the decoder matriX. ficients of the cell.

The solution to (9) gives the network configuration result-

ing in an encoding; that minimizes the expected-norm

betweenu and its reconstruction. Thus inevitable, the Both sets of equations have an interesting structure. They
subspace spanned by the optimals identical to the PSA involve the diference between the input and the net-
subspace. Computing the gradient of (10) with respect wyork reconstructiory and correspondingly the flierence

W, we obtain the exact gradient flow between the network stateg and some novel state.
From their definition we see, that the latter states would
Wi = JUP; arise if we instead ofi apply v to the network. The key

(11)  to construct a local adaptation dynamics is to introduce a

A _ -1 T _ _
Wi=a"PUP, for k=2....L-1, second, overlayed network in addition to the existing pro-

with _cess_ing network. _The resulting topo_logy for (1_4) is_ shown
in Fig. 2. The neighborhood for a single cell in this two-
U=20 - W, E® - ®W,E (12) layered network for (14) is indicated in Fig. 3. For the sim-
J=1+aWE. (13) %Tred dynamics (15) the number of neighbors reduces to

For EW; — | one arrives at the simplified flow by replac-
ingU - U= ®-W;E® in (11). The resulting dynamics
can be associated with the flow in [5]. These averaged dy- Here we investigate the stability of the nonlinear matrix
namics (11), involving the covariance matdx can be ap- differential equation (11) and its approximation uslig
proximated through stochastic approximation [6, pp. 144hat describe the average dynamics of (14) and (15), re-
® ~ uu’. Assuming positive definiteness fn (11), that spectively. The dynamics (11) performs a exact gradient
can be ensured by an appropriate choice,af can be re- descend on the positive definite objective (10). Thus, the
placed byl without changing the stable equilibrium pointsobjective function can be utilized as a Lyapunov function
of the dynamics (11). With this we arrive at the simpléf we can show that the time-derivative of (10) along the

3.2. Stability Analysis

stochastic learning dynamics trajectoryW,(t) is always negative. This holds true for all
: T T gradient systems and in particular we have
Wi = p(u = v)X; +pu(Xz — &) (14)
. L-1 T
Wy = y(Xk — EQXpq + YXk(Xkrt — Ei) s oJ _ _ Z Tr Wi | Wi <0. (16)
a4 (et ) a

fork = 2,...,L -1 with & = Py andu denotes a small
adaptation rate consistent with the stochastic approximar the following we show that (10) is also a local Lya-
tion andy = e, The correspond stochastic dynamicsunov function for the simplified matrix flow with) =

for the approximate flow wittJ reads U-®(1 -W;E). The local region in state space, where (10)
: T is a Lyapunov function for the simplified flow is defined
W1 = u(u - v)x; (15 W = (W] € BMN(@O,I),W, € TVM . W _; €

Wi = y(Xk — £)Xp1- T™M*My EW, = I}, with | > N — M. For this to make
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sense we have to show that a trajectory starting in the seéhus, in addition to the signal and reconstruction propaga-
W will always stay within that set. Let us define the trajection equation (19) we obtain the nonlinear coupling adap-
tory as the set of coupling matrices that are solutions to thation equation for cell in the signal propagation layer as

approximate flow a®V(t) = {W(t) € B™N(0,1), W(t) €
TMM W (t) € TM*M}with t € [0, o) andl > N—M.
After some algebra one obtains that
%[E(t)wl(t)] =0 for W(0)e W, a7
Thus, withW(0) € ‘W the trajectory stay within that region
W(t) € W for all timest. For the positive definite (10) to

be a local Lyapunov function i’ it remains to show that
it decays along the trajectory. We find that

0J

Tr[QUET)TQUET)| <0 for W(t) e W.

4. The Subspace CNN

We now interpret the obtained dynamical system of Se
tion 3 in term of the adaptive CNN framework. The pro

posed adaptive CNN has two planar layers that are co

pled. One layer propagates the input signalhile the
other layer propagates the reconstructed signBbth lay-
ers have the identical coupling d@eients. Thus, with the
corresponding feedback matrix

—al W; O 0 0
W] -al W, O 0
A=| O W-IZ- —-al W3 0 , (18)
0 0 0 W, -al
we obtain the processing equations as
X = —ax + AX + BU, x(0) = X
: _ 19)
§=-af+AE+By,  £(0) =&,

with x = (x],x7,...,x] )T andé = (£],€1,...,€] )" and
with u = (u™,0)", v = (v",0)7, v = W1x, where the
vectorQ is of dimension Ix M(L — 1). As PSA is a linear

transformation, the resulting cellular network (19) isekm.

Alternatively, it can be interpreted as a CNN operated in the

linear region ofy; = f(x). Furthermore we have

a?l
B_(O

0
0 k

wherel is theN x N unit matrix. Concerning the adapta-
tion equations for the coupling cfieients, we observe that

(20)

for the proposed processing topology of Fig. 1 for stag]

1 < k < L, each cell has to adapt three coupling ftiee
cients (apart from boundaryfects). These are the cou-

pling codficient toward the next stage. For the linear in-
dexing scheme, the three indices for the neighboring cell i

the consecutive stage can be obtained by adding the st
dimensionM, M — 1 andM + 1 to the linear index posi-
tion of the cell that we consider (except boundaffgets).

Aij = y(% = &)%)+ xi(X) = &)), (21)
with j e N(i) = {i+M-1,i+ M, i+ M+1}. Inthe same way
the coupling adaptation equation based on the approximate
flow (15) reads

Ajj = y(xi = &)x;, (22)

with j € N(i) = {i+ M- Li+ M,i+ M + 1}. Forthe
stagek = 1 and thus fori < N the dynamics aréy; =
(0 =) X+ (xj—€7) andAy; = (T —v)x; with j € N(i),
for (14) and (15), respectively. The neighbor positid(s)
fori < N of sizel+1 can be readféfromW] € BWN(Q,1).

5. Conclusion

We proposed an extension of the classical CNN frame-
work to allow for adaptivity of the processing cell and

Showed a first application of such a network to PSA. The

local adaptation rules are derived from a gradient flow on
H’global objective that is a function of all states and in-
puts of the network. The new framework can serve as a
model system to understand self-organizing processes and
to design novel robust, fault-tolerant engineering system
Interpreting a CNN as a lattice approximation of a con-
tinuous medium, the adaptive extension would correspond
to asmartmedium, that would change its spatial inhomo-
geneity according to external stimuli. Open issues involve
the design of nonconservative local tests for stabilityhef t
processing equations in the discussed application and in
adaptive CNNs in general.
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