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Abstract— We present a four-dimensional nonlinear
model for classical cross-coupled LC oscillators. The
widely accepted oscillation condition for this class of os-
cillators is shown to be non-optimum although oscillations
are produced when it is satisfied. Further, a nonlinear
graphical design technique is described.
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I. INTRODUCTION

Characterizing the performance of sinusoidal oscillators is
crucial for many electronic systems. Despite the contributions
of various researchers, originating from a linear circuit theory
perspective [1], some important characteristics of oscillators,
such as latch-up and hysteresis jumps, can be predicted only
using nonlinear analysis techniques [2]-[3]. Further, the type
of nonlinearity inherent within any oscillator structure and
whether its is monotone or non-monotone defines its behavior
as a relaxation or sinusoidal oscillator and determines the
oscillation amplitude [4].

Cross-coupled oscillators form a famous class of oscillators
based on activating a passive LC tank resonator through a
differential negative resistor [5]. They are widely used in com-
mercial applications particularly when employed as VCO’s
[6]-[7]. Traditional linear analysis usually treats these oscil-
lators as second-order systems, due to symmetry; from which
the condition for oscillation according to the Barkhausen
criterion is simply to ensure that the loop gain exceeds unity
[8]. A classical cross-coupled oscillator is shown in Fig. 1(a).
Many variants of this oscillator can be found in the literature,
however, all of these variants essentially reduce to the model
shown in Fig. 1(b). In particular, the cross-coupling technique
connects two inverting amplifiers (symbolized in Fig. 1(b) as
digital inverters for simplicity) in a closed-loop; in Fig. 1(a)
each transistor along with its resistive load form one common-
source amplifier. The linear analysis-based oscillation condi-
tion implies that the gain of each amplifier exceeds unity;
i.e. gmrr > 1, where g, is the small signal MOS transistor
transconductance and 7, is the resistive load.

In this work, we derive a 4D nonlinear model and show
that the condition g,,,7;, > 1 is not optimum, although it does
guarantee oscillations.
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Figure 1: (a) Cross-coupled oscillator and (b) its inverter-based
equivalent. (c) Voltage-controlled nonlinear resistor formed of two
inverters and (d) 4-D oscillator model.

II. PROPOSED 4D NONLINEAR MODEL

It is known that two invertering amplifiers connected as
shown in Fig. 1(c) form a monotone voltage-controlled cubic-
type differential negative resistor whose characteristics can be
modelled by [9], [10]
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I, is the current flowing into the resistor, V,, is the volt-
age across the resistor, V[, is the zero crossing voltage (see
Fig. 1(c)) and g is the slope at the origin in Amp/V. It is clear
that around the origin (V,, << Vp), the differential resistance
is negative and equal to 1/go.

With reference to Figs. 1(b) and 1(c) and noting the location
of the two nodes labelled a and b respectively, it is possible
to model the oscillator of Fig.1(a) as shown in Fig. 1(d).
Note that resistors 7, , represent both the inductors’ internal
parasitics and the inverters’ resistive loads. Also note that it
is always possible to transform any series reactance X and
resistance R, into a parallel susceptance X, and resistance

I = goVal(57)* = 1] (1



R, using the simple transformation R, = (R? + X?)/R; and
X, = —X,/(R% + X2). Hence, a parallel tank resonator and
a series resonator are essentially equivalent.

Figure 1(d) is described by the following equations

Ly, = Vo, —rpdp, , Lolps = Ve, — 11,11, (22)
CiVe, = I,—1Ip,,CVe, =1, — 11, (2b)

where I, is as given by (1) with V,, = V¢, — V. Common
practice usually implies identical resonators; i.e. C; = Cy =
C, L1 = L2 =L and "L, =TL, =TL.

Introducing the dimensionless variables: z(t) = V¢, (¢)/ Vo,
yt) = Veu®/Vo, 2(8) = rodn(®)/Ve, w(t) —
i, I2(t)/Vo, ¢ = /L/C/ry, Aq = gory and normaliz-
ing time with respect to v/LC, the above circuit equations
transform into
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(32)
An = fly,2) = Adl(y — 2)* = 1] (3b)

Note that ¢ in the above model is the quality factor of the tank
circuit while Ay is a differential gain since gq is related to g,
as go = gm/2 and g, 7 is the gain of each common-source
amplifier (inverter).

At the origin where (y — z)? << 1 the nonlinear gain
A, ~ —A; and the four eigenvalues of the system at this
point are found to be
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The first eigenpair given by (4a) can give rise to sinusoidal
oscillation with a normalized frequency' w, = 1 only if

q — oo; i.e. with a lossless tank. However, since ¢ is finite,
this eigenpair is always located in the left-half plane and
cannot provide sustained oscillations. It remains to investigate
the second eigenpair of (4b). Recalling the widely spread
oscillation condition g,,ry > 1, which is equivalent to A5 >
1/2 [8], and consulting (4b) exactly at A; = 1/2 reveals that
this eigenpair is then located at %(q2 —1+5+/2¢%2 — ¢4 —1).
It is seen that for any ¢ > 1, this complex pair splits into
two real eigenvalues; one of which is always positive. Hence,
the resulting oscillations are not sinusoidal but are rather
relaxation-type oscillations [4]. As z(t) and y(¢) increase, the
term (y — x)? dominates resulting in A4, becoming positive
and the system turning into a stable dissipative system. This
mechanism maintains bounded relaxation oscillations. The
maximum amplitude of oscillation can be approximated by
equating A, = 0 — (y — x)? = 1. If the two inverters in
Fig. 1(b) operate within their bandwidth and introduce no extra
nonideal phase-shift then z = —y and hence Tpax = Ymax =
1/2 2.

IThe de-normalized frequency wo = wp /v LC = 1/+/LC since time is
normalized with respect to v/ LC'.
2This means Vo, o = VO max = V0/2-

Figure 2 shows the waveforms obtained from numerical
integration of (3) at A; = 1/2 with ¢ = 5. The cubic
nonlinearty, plotted dynamically during oscillations, is also
shown in the figure. The waveforms are typical for relaxation
oscillators and indeed Zmax = Ymax ~ 1/2.
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Figure 2: Relxation oscillations obtained from the 4D model of the
cross-coupled oscillator with A = 1/2 and ¢ = 5. Cubic
nonlineaity is shown in the subplot.

Consulting (4b) again, it is seen that the correct condition
for oscillation is
1 TL
AdQTqQ_’gm>7L/C (5)
which places the eigenpair of (4b) on the jw axis. To start
oscillations, the eigenpair should be slightly shifted into the
right-half plane implying A; > 1/2¢%. The frequency of
oscillation is then given by

wn =1v1-1/¢? (6)
which simplifies to w,, = 1 (wo = 1/VLC) for ¢ >> 1.
It can also be shown that for a fixed gain 4,4, the maximum

amplitudes Tmax = Ymax < 4/1— ﬁ. Figure 3 shows
the waveforms obtained from numerical integration of (3) at
Ay = 0.025 with ¢ = 5 along with the dynamically plotted
cubic nonlinearity. Note from (5) that the oscillation condition
in this case is Ag > (1/50 = 0.02).

It should be noted that the condition for oscillation (5)
applies only at the origin (z(t) = y(t) = 0) whereas the real-
time condition depends on the amplitudes of x(¢) and y(¢) and
is given by

1 1
1—(y—2)? "~ 2¢2(1 — 422) M
This condition implies that for a fixed A4 and as the oscillation
amplitude grows, a point at which the oscillation condition
will not be satisfied (hence oscillations seize) is guaranteed.
Alternatively, in order to oscillate, the two inverters of Fig. 1(b)
should be designed such that their input-output (V; — V)
characteristics satisfy the relation
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Figure 4 is a plot of this boundary curve at ¢ = 5 and at
q = 1 respectively indicating the regions where oscillations
are possible. It is clear that the lower the quality factor, the
sharper the needed amplifier characteristics (i.e. higher gain is
needed). Note in Fig. 4 that normalized input (V,,; = V;/Vb)
and output (V,,, = V,/Vp) are plotted. For comparison, we
have also plotted the nearest two approximate curves given by
the hyperbolic tangent nonlinearities V,,, = — tanh(V},;/20)
and V,,, = —tanh(V,,;) respectively.

Equation (8) thus describes a simple graphical design
method whereby it is required to optimize the V; —V,, nonlinear
transfer curve for each inverter to be as close as possible to the
boundary curve at a given ¢, as demonstrated in the following
section.
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Figure 3: Sinusoidal oscillations obtained from the 4D model of the
cross-coupled oscillator with A4y = 0.025 and ¢ = 5. Cubic
nonlineaity excursion is shown in the subplot.
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Figure 4: Boundary transfer characteristics for the two inverters to
oscillate at ¢ = 5 and ¢ = 1 respectively.

IT1I. DESIGN EXAMPLE

The oscillator in Fig. 1(a) was designed to oscillate at
20Mhz with L = 1pH, C' = 64pF and rj, = 252, which sets

q = 5. Hence, the condition to start oscillation is Az = 2599 >
(% = 0.02); i.e. go > 0.8mA/V. The design process requires
choosing the MOS transistors” aspect ratios (WW/L) as well as

suitable biasing positive and negative supply voltages (V.. &
Vs respectively) in order to ensure sustained oscillations with
go as close as can be to its theoretical value (0.8mA/V). The
graphical nonlinear design process can be followed where it
is required that while oscillations are sustained:

(i) the cubic nonlinearity curve be as close as possible to
the cubic nonlinear curve plotted in Fig.3 for ¢ = 5

(i1) the transfer characteristic for each inverter be as close as
possible to the ideal boundary curve plotted in Fig.4 at ¢ = 5.

Figure 5 shows Spice simulation results obtained with
W/L = 11p/1p, Vee = +0.25V and Vs = —1.75V using
a 0.25u CMOS process parameters. The cubic nonlinearity
[(Ic1 — Iea + 1o — I1) versus (Vo1 — Vieo)], dynamically
plotted during simulations, is shown in the middle trace of
Fig.5 from which gy is measured to be 1.4mA/V and hence
Ay = 0.036 > 0.02. Below this value, oscillations cannot
start. Using (7) with this value of Ay, the amplitude ,ax
is found to be 0.33 and hence Vg, , max = 0.33Vp =~ 1V
(Vo =~ 3V). The lower trace shows the inverter input-output
transfer characteristic (Vo1 versus Vo) in this case compared
to the ideal oscillation boundary which from Fig.4 at ¢ =
5 can be approximated by V,, = —tanh(V,;/20). Note
that the nonlinear graphical design process does not require
any knowledge of the specific MOS transistor technology
parameters’ and that this process can be automated via a batch
simulation file in search for optimum V.., Vs and/or W/L.

Close inspection of the nonlinearity in the middle trace of
Fig. 5 reveals a very weak hysteresis effect. In particular, as
Ay is increased much, a hysteresis loop becomes apparent,
as shown in Fig.6 for W/L = 50u/1u. This will give rise
to relaxation rather than sinusoidal oscillations which is what
happens when using the widely spread condition A5 > 1/2,
implied by the Barkhausen criterion.

Finally, it is important to note here that in driving the
nonlinear 4-D model (3) we have assumed the two inverters
to be frequency independent; i.e. we have not considered the
internal MOS parasitic capacitors unless they appear in parallel
with C; or Cy. Thus the 4D model remains valid only within
the bandwidth of each common-source amplifier (inverter).

IV. CONCLUSION

We have proposed a 4D nonlinear model for cross-coupled
oscillators and a more accurate condition for oscillation. A
nonlinear graphical design optimization procedure was ex-
plained.
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Figure 6: Hysteresis effect in the cubic nonlinearity as Ay is
increased (W/L = 50u/1u).
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Figure 5: Spice simulations with L = 1uH, C = 64pF,
rr, =250, W/L =11p/1p, Vee = 40.25V and Ves = —1.75V.

Upper trace: V1 and Voo time waveforms. Middle trace:
dynamically plotted cubic nonlineaity. Lower trace: Vo1 —V oo
inverter transfer characteristic versus ideal oscillation boundary

at ¢ = 5.
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