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Abstract—A double frequency vibration including the
second harmonic is introduced as a vertical excitation in
a parametrically excited pendulum. The harmonic arises
in the motion of a body, corresponding to the excitation,
which is affected by rotation of the pendulum. This paper
examines the influence of the harmonic on dynamics asso-
ciated with periodic rotation. It is clarified that the second
harmonic with a certain range of phase facilitates the bifur-
cation with respect to the amplitude of the fundamental in
the excitation.

1. Introduction

Pendulum exchanges a vertical vibration into rotation
parametrically. The characteristics have a potential for the
application of energy extraction from vibration in nature
such as sea wave. The parametric pendulum [1, 2] repre-
sents a mechanical pendulum with its pivot point excited
vertically. The vertical excitation, called the parametric ex-
citation, is assumed to be a sinusoidal vibration. There ap-
pear some steady states in the system. In particular, peri-
odic rotation corresponds to the converting motion suitable
for the energy extraction. Analytical solutions are obtained
for some simple types of periodic rotations [3, 4] and the
domain of existence for rotation is numerically clarified in
the excitation parameter plane [2, 5]. These findings are
expected to contribute the implementation of the energy ex-
traction.

The parametric excitation is adjusted from the point of
view of application. In the extraction of wave energy, hor-
izontal vibration is introduced into the vertical excitation
to consider the elliptical motion of sea wave [6]. For the
elliptical excitation the characteristics of periodic rotation
depends on its rotational direction. The optimum waveform
of the parametric excitation is explored for the maximum
amount of energy conversion in a pendulum with a motion
control [7]. Adjusted excitations cause substantial change
to the dynamical property from the sinusoidal excitation.

In this paper, second harmonic is introduced to a sinu-
soidal excitation. The second harmonic is caused by the
motion of a body that exerts the parametric excitation on
the pivot point of a pendulum. In general, the motion is

fixed at a sinusoidal vibration in the parametric pendulum
on the assumption that the motion of the pendulum exerts
little effect on the body. This implies that the pendulum ex-
tracts little energy in comparison with the vibration energy
of the body. The ratio of extracted energy is associated with
the size of the effect. For large ratio of energy extraction,
the fundamental and the second harmonic are dominant in
the motion of the body. This study clarifies that the second
harmonic with a certain range of phase facilitates the bifur-
cation with respect to the amplitude of the fundamental.

2. Second Harmonic Excitation

A model is derived for the parametric pendulum with
a second harmonic excitation. Rotation of a pendulum af-
fects the motion of its supporting rig in a pendulum rig sys-
tem under a sinusoidal vibration. For periodic rotation, the
second harmonic arises in the motion of the rig correspond-
ing to the parametric excitation.

2.1. Pendulum Rig System

Figure 1 shows a pendulum rig system. The system is
constructed of a pendulum with the mass m and the length l,
and a rig with the mass M which supports the pendulum. It
is assumed that the motion of the supporting rig is con-
strained in the vertical direction. The vertical displace-
ment x determines the position of the rig. The position
of the pendulum is defined with the angular displacement θ
from the downward position. The behavior of the pendu-
lum rig system is represented by the following equations of
motion:

ml2
d2θ

dt2 + c
dθ
dt
+ ml
(
g +

d2x
dt2

)
sin θ = 0, (1a)

(
M + m

)d2x
dt2 +

(
M + m

)
g

= −ml
[d2θ

dt2 sin θ +
(dθ

dt

)2
cos θ
]
+ F(t), (1b)

where g is the gravity acceleration, c depicts the viscous
damping coefficient, and force applied to the supporting rig
is expressed as

F(t) =
(
M + m

)
g + A cosΩt, (2)
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Figure 1: Schematic of a mechanical pendulum rig system.

where A and Ω stand for the amplitude and the angular fre-
quency of the vibration, respectively. Eq. (1b) describes
that the motion of the pendulum exerts a force on the rig.
The force increases with the mass ratio of the pendulum to
the whole system.

2.2. Parametric Excitation with Second Harmonic

The parametric pendulum with the second harmonic ex-
citation is derived by restricting the motion of the pendu-
lum to periodic rotation. Substituting (1b) and (2) into (1a)
and non-dimensionalizing it with respect toΩ0 =

√
g/l, the

motion of the pendulum is described by

d2θ

dt′2
=

1
1 − µ sin2 θ

[
− c′

dθ
dt′

−
{
1 + A′ cosΩ′t′ − µ

( dθ
dt′

)2
cos θ
}

sin θ
]
.

(3)

In the equation, t′ = Ω0t depicts the dimensionless time,
µ = m/(M +m) the ratio of mass, c′ = c/ml2Ω0 the dimen-
sionless damping coefficient, and A′ = A/(M + m)g and
Ω′ = Ω/Ω0 are the dimensionless amplitude and angular
frequency of the excitation. Here it is noted that the range
of the mass ratio is 0 ≤ µ ≤ 1.

Now we consider that c′, µ, and A′ are sufficiently small.
Then the approximation 1/(1 − µ sin2 θ) ≈ 1 + µ sin2 θ is
available. Because the motion of the pendulum is restricted
to periodic rotation, the variable θ(t′) can be approximated
as θ(t′) ≈ Ω′t′ + θ0, where θ0 denotes the initial value of
θ(t′). By substituting the above approximations into (3)
and neglecting the second order of the above small param-
eters, the following equations are obtained for the paramet-
ric pendulum with the second harmonic excitation:

dθ
dτ
= v, (4a)

dv
dτ
= −γv − [1 + p cosωτ + α cos(2ωτ + ϕ)

]
sin θ. (4b)

This equation is normalized with τ =
√

1 + µ/2(t′ + β/Ω′)
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(a) Rotation (1,1) at α = 0.
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(b) Rotation (1,1) at α = 0.1 and ϕ = −π.
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(c) Rotation (2,2) at α = 0.1 and ϕ = 0.

Figure 2: Behaviors for different parameters of the second
harmonic excitation at γ = 0.1, p = 0.6, and ω = 1.5. The
upper figures show the parametric excitation e(t) and the
lower the motion θ(t) of the pendulum. The circles on the
lines indicate the stroboscopic points taken at every excita-
tion period.

and the other parameters are

β = arctan
(
− µΩ′2 sin θ0

A′ − µΩ′2 cos θ0

)
, γ = c′/

√
1 + µ/2

p =

√
(A′ − µΩ′2 cos θ0)2 + (µΩ′2 sin θ0)2

1 + µ/2
,

ω = Ω′/
√

1 + µ/2, γ = c′/
√

1 + µ/2,
α = µ/(2 + µ), and ϕ = π − 2β + 2θ0.

In Eq. (4) the parametric excitation can be regarded as dou-
ble frequency excitation that consists of the fundamental
and the second harmonic vibrations. Here the amplitude of
second harmonic is restricted in 0 ≤ α ≤ 1/3.

3. Numerical Study

An influence of the second harmonic excitation is inves-
tigated on the dynamics associated with periodic rotation
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Figure 3: Bifurcation diagrams of periodic rotation in (α, ϕ)-plane for some values of p at γ = 0.1 and ω = 1.5. The light
gray corresponds to the domain of existence for rotation (1, 1) and the dark gray the domain for rotation (2,2). SN and PD
indicate the boundaries on which the saddle-node and the period-doubling bifurcations take place.

in the parametric pendulum. In this section, periodic ro-
tations are classified based on the expression defined in
[5]. A combination of a natural number n and a nonzero
integer r corresponds to a periodic rotation described by
θ(t) = θ(t − nT ) + 2πr, where T denotes the period of the
parametric excitation, that is, T = 2π/ω. The motion is ex-
pressed as rotation (n, r). Throughout the numerical study,
the damping parameter is fixed at γ = 0.1 in Eq. (4) accord-
ing to the previous works [2, 5, 6].

Figure 2 shows the behaviors for different parameters of
the second harmonic in the parametric excitation. The fun-
damental is regulated at p = 0.6 and ω = 1.5 so that a ro-
tation (1,1) appears without the second harmonic. Fig. 2(a)
shows the behavior under the single frequency excitation at
α = 0. Two behaviors excited by the second harmonic are
shown in Figs. 2(b) and 2(c). Comparison of these figures
reveals an influence of the second harmonic on periodic ro-
tation. Fig. 2(c) shows a different rotation from the others.
The second harmonic at α = 0.1 and ϕ = 0 doubles the pe-
riod of rotation. In contrast, the period does not change at
α = 0.1 and ϕ = π. These behaviors identify the influence
of the second harmonic on periodic rotation. The influence
strongly depends on the phase ϕ of the second harmonic.

Figure 3 shows the bifurcation diagrams in (α, ϕ)-plane

of the second harmonic for some values of p at ω = 1.5.
Each diagram is expressed in polar coordinate of (α, ϕ) and
its center point indicates a condition without the second
harmonic. The light gray corresponds to the domain of
existence for rotation (1, 1) and the dark gray the domain
for rotation (2, 2). The center point is included in the gray
in each of Figs. 3(b), 3(c), and 3(d). This suggests that
the pendulum rotates under a single frequency excitation at
each value of p. On the other hand, periodic rotations do
not appear in Figs. 3(a) and 3(e).

In the diagram at p = 0.5 shown in Fig. 3(c), the light
gray contains the circle with radius α = 0.1. For any
phase ϕ of the second harmonic at the amplitude α, the
pendulum sustains its rotation. But the light gray does
not cover over the circle with radius α = 0.2. The cir-
cle has intersections with each of the dark gray and the
white. The boundaries of the intersections show that the
period-doubling bifurcation arises. Increment of the ra-
dius α extends the two intersections. Therefore, the second
harmonic with large amplitude can disturb rotation (1, 1)
through the period-doubling bifurcation. The disturbance
is particularly pronounced for ϕ = 5π/3. Fig. 3(d) shows a
bifurcation diagram similar to Fig. 3(c). For the increase of
p, the gray shifts to the direction of ϕ = 2π/3, that is, the
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disturbance increases. Furthermore the influence can also
be observed at the condition of p = 0.7, shown in Fig. 3(e),
so that periodic rotation does not appear without the sec-
ond harmonic. Thus the second harmonic with phase near
to ϕ = 2π/3 sustains periodic rotation.

Next, the diagram at p = 0.4 shown in Fig. 3(b) is con-
sidered. The gray shifts to the direction of ϕ = 5π/3 from
Fig. 3(c). This is consistent with the above discussion. The
light gray is surrounded by two types of boundaries. One is
the period-doubling bifurcation adjacent to the dark gray,
and the other the saddle-node bifurcation neighboring to
the white. The saddle-node bifurcation boundary appears
because of the decrease of p. The boundary is also ob-
served at the smaller amplitude p in Fig. 3(a). Therefore,
the second harmonic suppresses periodic rotation through
the saddle-node bifurcation for the smaller value of p. The
suppression is enhanced in particular for ϕ = π/2. The in-
fluence associated with the saddle-node bifurcation is dis-
tinctly confirmed at the condition so that periodic rotation
does not appear under the single frequency excitation. The
second harmonic can contribute for sustaining the rotation.

The bifurcation diagrams clarify the disturbance of pe-
riodic rotation by the second harmonic in the paramet-
ric excitation. The dynamics associated with rotation is
non-uniformly disturbed for the phase ϕ of the second
harmonic. The phase of ϕ = 5π/3 increases the distur-
bance through the period-doubling bifurcation and that of
ϕ = π/2 does the disturbance through the saddle-node bi-
furcation. The positional relationship between the center
point and the bifurcation boundaries in each diagram for
the value of p implies that the large effect of the excita-
tion to swing the pendulum up induces the period-doubling
bifurcation and the small effect does the saddle-node bifur-
cation. The size of effect depends on the absolute value of
excitation at about θ = π/2. In fact, the second harmonic
increases the absolute value at ϕ = 5π/3 and decrease it at
π/2.

4. Concluding Remarks

In this paper, we introduce a double frequency vibration
including the second harmonic as a parametric excitation
applied to a pendulum and examine the influence on the
dynamics associated with periodic rotation. The second
harmonic excitation results from the consideration of the
motion of a body corresponding to the parametric excita-
tion. Numerical study is carried out in order to show the
domain of existence for periodic rotation in the parameter

plane of the second harmonic. The second harmonic with
a certain range of phase facilitates the bifurcation with re-
spect to the amplitude of the fundamental. The understand-
ing of the influence is significant from the point of view of
the application, because the domain corresponds to the con-
dition of the parametric excitation for sustaining the motion
converting energy.
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