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Abstract– This paper addresses the application of 

continuous chaos control method for avoiding bifurcations 

in a parametrically excited pendulum. Specifically, a 

delayed feedback control method is employed to maintain 

stable period-one rotating solution of the pendulum. The 

motivation of this analysis is the energy harvesting from 

sea waves where the idea consists in converting the base 

oscillations of a structure into a rotational motion of the 

pendulum mass. In such case, the oscillations of the 

structure are caused by the sea waves, whereas the 

pendulum rotational motion provides a driving torque for 

an electrical generator. In this context, bifurcation diagram 

is investigated by considering forcing amplitude variation. 

Basically, it is investigated a situation where the desired 

rotational solution loose stability. Numerical and 

experimental results are presented showing that chaos 

control method can be successfully applied to perform 

bifurcation control. 

  

1. Introduction  

 

The idea of energy harvesting from various renewable 

sources has been gaining an increasing interest and 

importance in recent years. The currently available energy 

harvesting or extraction devices convert solar and wind 

energy effectively. The sea waves though possessing the 

largest renewable energy source are practically untapped. 

This is mainly due to the fact that most of the current 

devices have so-called end points resulting in inability to 

design them for extreme weather conditions. Wiercigroch 

[1] proposed an energy generation concept from the sea 

waves using a pendulum system by converting the base 

oscillations of the structure into a rotational motion of the 

pendulum mass. In such case, the oscillations of the 

structure are caused by the sea waves, whereas the 

pendulum rotational motion provides a driving torque for 

an electrical generator [2-4]. In order to explore potentials 

of this concept, the dynamics of the pendulum system has 

to be carefully considered and the means of maintaining 

the periodic rotational solutions have to be developed. 

Although rotating solutions are found and studied by 

different authors, it should be pointed out that they only 

exist over limited parameters range and there are a lot of 

bifurcations of the system that destabilize this kind of 

motion. Thus, the bifurcation control can be very useful in 

maintaining the rotational solution of the system and 

crucial in potential energy extraction applications. In this 

same context, Yokoi & Hikihara [5] and De Paula et al. [6] 

present interesting results on the stabilization of rotational 

solutions in a parametrically excited pendulum. 

In this work continuous chaos control method proposed 

by Socolar et al. [7] is employed in order to maintain the 

rotating solution of the pendulum system by stabilizing 

unstable periodic orbits of the system. The main goal is to 

avoid bifurcations that destabilize the rotating motion, 

being useful for energy harvesting purposes. The control 

is carried out numerically and experimentally. 

 

2. Chaos Control Methods 

 

Chaos control methods can be split into discrete and 

continuous methods. Continuous methods are based on 

continuous-time perturbations to perform stabilization. 

This approach was first proposed by Pyragas [8] and deals 

with a dynamical system modelled by a set of ordinary 

nonlinear differential equations as follows: 

 

          ( ) ( , ) ( )t t t x Q x B                          (1) 

  (1) 

where t is time, n)( tx  is the state variable vector, 

n),( txQ defines the system dynamics, while 

n)( tB  is associated with the control action.  

Socolar et al. [7] proposed a control law named as the 

extended time-delayed feedback control (ETDF) 

considering the information of time-delayed states of the 

system represented by the following equations: 
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where K
nn  is the feedback gain matrix, 10  R  is 

a control gain, ( )t  S S  and ( )m t m  x x  are 

related to delayed states of the system and   is the time 

delay. The UPO stabilisation can be achieved by a proper 

choice of K and R. Note that for any gain defined by K 

and R, perturbation of Eq.(1) vanishes when the system is 

on the UPO since ( ) ( )t m t x x  for all m if iT , 

where iT  is the periodicity of the ith UPO. It should be 

pointed out that when R = 0, the ETDF turns into the 

original time-delayed feedback control method (TDF) 

proposed by Pyragas [8]. 

The controlled dynamical system consists of a set of delay 

differential equations (DDEs). The solution of this system 

is done by establishing an initial function x0= x0(t) over 

the interval (-m,0). This function can be estimated by a 

Taylor series expansion as proposed by Cunningham [9]: 

 

          
m m  x x x                          (3) 

 

 Under this assumption, the following system is 

obtained: 
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3. Pendulum-Shaker System 

 

Motivated by the cited idea of harvesting energy from 

sea waves, Xu et al. [10] and Horton et al. [11] analysed 

the behaviour of a parametric pendulum excited by 

electro-dynamical shaker, which is chosen to be studied in 

this work. Figure 1 shows a picture of the experimental 

apparatus. The setup consists of a pendulum rig fixed to 

an electromechanical shaker. The harmonic excitation of 

the system is provided by a shaker and two independent 

pendulums, with adjustable length and bob masses at the 

ends, are threaded to pendulum rods on the common 

supporting base. The rod is attached to a shaft, supported 

by needle bearing, in order to minimize friction. The shaft 

has a gear with a belt that provides the coupling to a low 

inertia DC servo motor of 1600rpm, which actuates over 

the system and provides the control torque. A 3 channel 

hollow shaft encoder with 500ppr monitors the angular 

position of the pendulum. An accelerometer is fixed on the 

base of whole rig in order to measure the actual excitation. 

In the study presented in this paper, only one pendulum is 

used, the other one is kept immovable.  

 
 

Figure 1 - Experimental rig: (1) Independent pendula; 
(2) Servo motors; (3) Encoders; (4) Accelerometer; (5) 

Shaker. 

 

Figure 2 presents a schematic picture of this system 

identifying mechanical and electrical parts. The 

mechanical system (Figure 2a) is comprised of three 

masses: the pendulum mass, M, the armature assembly 

mass, Ma, and the body mass, Mb, that represents the mass 

of the magnetic structure containing the field coil. The 

excitation is provided by an axial electromagnetic force, 

Fem, which is generated by the alternating current in the 

constant magnetic field represented by the electrical 

system.  

 

  
Figure 2 - Physical model of the pendulum-shaker 

system with mechanical and electrical components. 
Adopted from [10]. 

 

The mechanical part of the pendulum–shaker system is 

described by three generalized coordinates: angular 

displacement of the pendulum, θ, and the vertical 

displacements of the body and the armature, Xb and Xa, 

respectively. The electrical system is described by the 

electric charge q, that is related to the current I by its 

derivative: I = dq/dt. Equations of motion for each 

degree-of-freedom of the parametric pendulum-shaker 

system are given by: 
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where TC corresponds to the control parameter actuation, 

which consists of a torque applied to the pendulum; and 

F is the torque due to dry friction. Equations of motion 

are based on the formulation proposed by Xu et al. [10] 

adding terms related to dry friction and to control torque. 

For the numerical simulations, Eq. (5) is converted in a 

system of first order ODEs by considering the state 

variables },,,,,,{ IXXXX bbaa
x . By using the 

formalism presented for the ETDF control law, the control 

actuation TC, with m=3, may be expressed as follows: 
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where )(1   txx , )2(12   txx  and 

)3(13   txx . Moreover, matrix gain K becomes a 

scalar K once the control action is only applied to one 

differential equation, the one related to time evolution of 

2x , and its control law is only associated with delayed 

values of one state variable, 1x . In others words, only 

component K21 is different from zero and notation K is 

used for it. 

 
Table 1: Experimentally determined parameters 

of the pendulum-shaker system. 

M 0.709 kg l 0.2605 m c 0.0828 

kg/s 

Ma 27.58 kg Ka 86175.9 

kg/s
2
 

Ca 534.05 

kg/s 

Mb 820 kg Kb 244284 

kg/s
2
 

Cb 679.35 

kg/s 

RE 0.3  L 2.626 × 

10
−3

 H 
 130 N/A 

 

F 0.0625 Nm     

 

Xu et al. [10] discussed experimental aspects of the 

pendulum-shaker dynamics. The parameters related to the 

shaker used in this work were experimentally determined 

in [10]. Parameters related to pendulum rig were also 

experimentally determined. All parameters are presented 

in Table 1.At first the uncontrolled behaviour of the 

system was studied. From an initial forcing amplitude 

with =1.51Hz, where the pendulum presents a period-1 

rotation behaviour, the forcing amplitude was decreased to 

construct bifurcation diagrams shown in Figure 3 and 

obtained numerically (left) and experimentally (right). 

From the phase spaces and Poincaré sections presented in 

Figures 4 and 5 it is possible to observe that the initial 

period-1 rotation orbit leads to a quasi-periodic motion 

and then to a period-2 oscillatory motion. 

 

 
Figure 3 – Bifurcation diagram by decreasing 

forcing amplitude with =1.51Hz. Left: Numerical; 
Right: Experimental. 

 

 

 
Figure 4 – Phase space together with Poincaré 

section for different forcing amplitude and =1.51Hz 
obtained numerically. 

 

 

 
Figure 5 - Phase space together with Poincaré 

section for different forcing amplitude and =1.51Hz 
obtained experimentally.  

 

The undertaken analysis exploits the idea of using the 
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chaos control method in order to avoid bifurcations 

depicted in Figure 3 that destabilize periodic rotational 

solution of the pendulum. Essentially, bifurcation control 

is of concern. 

Figure 6 presents controlled and uncontrolled 

bifurcation diagram obtained numerically (a) and 

experimentally (b) with controller parameters R=0 and 

K=1. The time delay,  , is considered equal to the forcing 

period, 2/ω, in both numerical and experimental 

approaches since the desired rotational orbit has 

periodicity one. It is important to mention that all points 

of Poincaré section are plotted in the diagram, including 

transient response. Note that in both cases the controller 

eliminates the bifurcation, preserving the periodic 

rotational behaviour. 

 

 

 
Figure 6 - Bifurcation diagram with and without 

control action decreasing the forcing amplitude with 

=1.51Hz. a) Numerical; b) Experimental. 

 

4. Conclusions 

 

This contribution deals with the application of chaos 

control methods to perform bifurcation control using a 

parametrically excited pendulum. This system is related to 

energy harvesting from sea waves and therefore, periodic 

rotational behaviour is the desired one. Bifurcation 

diagrams are constructed by considering forcing 

amplitude variation showing bifurcations from the desired 

rotational solution to non-rotational periodic response. 

Delayed feedback control is successfully employed 

numerically and experimentally to avoid these 

bifurcations, maintaining the rotational behaviour stable. 

In both controlled and uncontrolled system, numerical and 

experimental approaches present good agreement. 
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