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1. Introduction
To understand radio propagation structures and consider signal recovering techniques in mobile

communications, it is most effective to estimate DOAs (directions of arrival) of individual incoming
waves with array antennas. Also, in radar systems, it is required to discriminate the desired signal from
interference [1]. Recently, DOA estimation using EM (expectation-maximization) algorithm [2] based on
the maximum-likelihood (ML) approach receives much attention. It is because the EM algorithm remains
stable in scenarios involving small numbers of snapshots, coherent signals and low SNR. However, the
ML approach generally has the high computational complexity caused by optimization of the likelihood
function. In addition, the convergence rate is slow, if the incoming waves are coherent and their DOAs
are closely spaced.

In this paper, we apply the beamspace processing using DCMP (directionally constrained minimiza-
tion of power) criterion [3] to the EM algorithm for improving the convergence rate. Furthermore, we
investigate the effect of the error of initial values in the beamspace EM algorithm on the DOA estimation.
Through computer simulation, we show that the beamspace processing provides improved performance
for DOA estimation.

2. Signal Model and DOA Estimation
2. 1 Signal Model

Consider that the array antenna used for DOA estimation is aK-element linear array shown in Fig.1,
and also that it receivesL (L < K) narrow-band waves whose respective DOAs areθ1, θ2, · · · , θL and
complex amplitudes ares1(t), s2(t), · · · , sL(t). When the array response vector (mode vector) of thelth
incoming wave is given bya (θl) (l = 1, 2, · · · , L) , the array input vectorx(t) can be expressed as

x(t) =
L∑

l=1

a(θl)sl(t) + n(t) = As(t) + n(t) (1)

A = [a(θ1), a(θ2), · · · ,a(θL)] , s(t) = [s1(t), s2(t), · · · , sL(t)]T (2)

whereA ands(t) are called the array response matrix (mode matrix) and the signal vector, respectively,
andn(t) is the internal additive noise vector.

2. 2 EM Algorithm

The EM algorithm is the method based on maximum-likelihood estimation [2]. In the EM algo-
rithm, iterative calculation is carried out for getting DOAs from unobservable complete data rather than
observed incomplete datax(t). Each iteration consists of two steps: E-step (expectation) which approx-
imates the complete data by conditional expectation and M-step (maximization) which maximizes the
likelihood of the complete data. Themth iteration of the EM algorithm proceeds as follows.



E-step: The maximum likelihood estimate of complete datax(m)
l (t) is calculated by using the DOA

estimateθ(m)
l and the complex amplitude estimates(m)

l (t) of the lth wave, which is given by

x(m)
l (t) = s(m)

l (t)a(θ(m)
l ) + β

[
x(t) −A(m)s(m)(t)

]
(l = 1, 2, · · · , L) (3)

wherea(θ(m)
l ) is the response vector of thelth wave at themth iteration, andA(m) is the corresponding

array response matrix. Also,β is a non-negative coefficient of noise term, and it affects the convergence
characteristics.
M-step: The updated valuesθ(m+1)

l and s(m+1)
l (t) of the lth wave are obtained by using the covariance

matrix of complete data:C(m)
l = E

[
x(m)

l (t)x(m)
l (t)H

]
, as shown below.

θ(m+1)
l = arg max

θ

a(θ)HC(m)
l a(θ)

a(θ)Ha(θ)
, s(m+1)

l (t) =
a(θ(m+1)

l )Hx(m)
l (t)

a(θ(m+1)
l )Ha(θ(m+1)

l )
(l = 1, 2, · · · , L) (4)

Both E-step and M-step above-mentioned are repeated until estimated parameters converge.

3. Adaptive Beamspace Processing
3. 1 Beamforming Based on DCMP Criterion

Utilizing the estimated valuesθ(m)
l (l = 1, 2, · · · , L) in the DCMP criterion of the adaptive antenna,

the optimum weight vector for receiving only thelth wave is computed as follows.

wl(ul) =
R−1

xxa(ul)

a(ul)HR−1
xxa(ul)

(
w(ul)

Ha(ul) = 1
)

(5)

a(ul) =

[
1, exp

(
− j

2π
λ

dul

)
, · · · , exp

(
− j

2π
λ

(K − 1)dul

)]T

(6)

Here,ul = sinθ(m)
l , anda(ul) is the array response vector with the phase reference at the 1st antenna

element. Also,Rxx is the covariance matrix and in this case it is made up as

Rxx =

L∑
l=1

a(θ(m)
l )a(θ(m)

l )H + αI (7)

whereα is a small positive number (pseudo noise power) forRxx to be non-singular. Usingwl yields an
array pattern with the mainlobe in the direction of thelth wave and nulls in the other waves. In addition,
it is possible to control the whole ability of creating nulls by adjustingα in Eq.(7). For example, small
value ofα gives deep nulls, while large value ofα contributes to making almost only mainlobe.

When the number of beams formed for thelth incoming wave is three, the beamforming matrixWl

is constructed as follows by using the weight vectorwl .

Wl =

[
wln

(
ul −

2
K

)
, wln(ul), wln

(
ul +

2
K

)]
(8)

In Eq.(8), wln is the normalizedwl with ||wl ||. Wl is applied tox(m)
l (t) as W H

l x(m)
l (t), leading to

beamspace EM.

3. 2 Broad Null in Beam Patterns

In this paper, we introduce the broad null into the DCMP beam patterns. This is a countermeasure
to the estimation error, and we add nulls in the directions shifted by±2◦ from each estimated angle of
incoming waves which are suppressed. We apply this broad null to the DCMP when the number of
iterations of EM is within five times.



4. Performance Analysis by Computer Simulation
Under conditions shown in Tables 1–3, the computer simulation is carried out to clarify the per-

formance of the proposed algorithm. For DOA estimation, the EM algorithms using elementspace
beamformer, DFT-beamspace beamformer [4] and DCMP-beamspace beamformer are compared. As
the evaluation measure of estimated results, RMSE (root mean square error) is used, which is calculated
through 200 independent trials. The number of incoming waves is assumed to be estimated exactly in
any simulation of DOA estimation.

First, the convergence characteristics of various EM algorithms are examined when the incoming
waves are coherent and their DOAs are closely spaced. The radio environment is described in Table
2. The incoming waves are perfectly out of phase and completely correlated with each other. Figure 2
shows an example of the DCMP beam patterns which receive only the wave of 0◦ direction. The results
of estimation are shown in Fig.3 along with Cramer-Rao bound (CRB) [5]. From the figure, it is found
that the convergence rate becomes rapid by employing the adaptive beamspace processing using DCMP
with α = 10−6.

Next, the performance to the initial value error of various EM algorithms is examined. The radio
environment is described in Table 3. In this simulation, the initial value errorθe is an independent uniform
random number [0,∆θ] for each incoming wave, andθe is set as shown in Table 3. In addition, the broad
null is used in the beam patterns. Figure 4 illustrates an example of the DCMP beam patterns which have
the broad null in the direction of 30◦. As a result, Figure 5 shows the convergence of RMSE of estimates
in the case of∆θ = 10◦, and Figure 6 shows the RMSE of estimates versus the initial value error when
the number of iterations of EM is three. From the figures, it is confirmed that DCMP withα = 106 and
DCMP withα = 10−6 and the broad null provide good performance.

Table 1: Simulation conditions.

Array configuration Uniform linear array of
isotropic elements

Element spacing 0.5λ
Number of elements 8
Number of beams 3
Number of waves 2
SNR 20dB

Table 2: Radio environment 1.

DOA from array broadside (0◦, 10◦)
Initial value of EM (−5◦, 15◦)

Table 3: Radio environment 2.

DOA from array broadside (0◦, 30◦)
Initial value of EM (0◦ + θe, 30◦ − θe)

5. Conclusion
Via computer simulation of DOA estimation, we have investigated the performance of the EM algo-

rithm with the beamspace processing using DCMP criterion. In the convergence characteristics, DCMP-
beamspace EM has shown high speed of convergence. In the characteristics to the initial value error, even
if the error is large, it is possible to estimate DOAs successfully by adjustingα (pseudo noise power) and
introducing the broad null into the beam patterns. As the future work, we will examine how to set the
initial values of EM involving the estimation of the number of waves.
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Figure 1:K-element uniform linear array
(element spacing:d)
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Figure 2: Multibeam patterns using DCMP for re-
ceiving the wave from 0◦ and suppressing the one
from 10◦.
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Figure 3: Convergence of RMSE of estimates.
(β = 1/

√
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Figure 4: Multibeam patterns using DCMP which
have the broad null in the direction of 30◦.
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Figure 5: Convergence of RMSE of estimates.
(β = 1,∆θ = 10◦, and broad null is used.)
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Figure 6: RMSE of estimates vs. initial value error.
(β = 1, the number of iterations of EM is three.)


