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1. Introduction

To understand radio propagation structures and consider signal recovering techniques in mobile
communications, it is mostfiective to estimate DOAs (directions of arrival) of individual incoming
waves with array antennas. Also, in radar systems, it is required to discriminate the desired signal from
interference [1]. Recently, DOA estimation using EM (expectation-maximization) algorithm [2] based on
the maximum-likelihood (ML) approach receives much attention. Itis because the EM algorithm remains
stable in scenarios involving small numbers of snapshots, coherent signals and low SNR. However, the
ML approach generally has the high computational complexity caused by optimization of the likelihood
function. In addition, the convergence rate is slow, if the incoming waves are coherent and their DOAs
are closely spaced.

In this paper, we apply the beamspace processing using DCMP (directionally constrained minimiza-
tion of power) criterion [3] to the EM algorithm for improving the convergence rate. Furthermore, we
investigate thefect of the error of initial values in the beamspace EM algorithm on the DOA estimation.
Through computer simulation, we show that the beamspace processing provides improved performance
for DOA estimation.

2. Signal Model and DOA Estimation
2.1 Signal Model

Consider that the array antenna used for DOA estimatiorKisséement linear array shown in Fig.1,
and also that it receivds (L < K) narrow-band waves whose respective DOAséred,, ---, 6, and
complex amplitudes arg(t), sx(t), ---, s.(t). When the array response vector (mode vector) oftthe
incoming wave is given bw (6) (I =1, 2, ---, L), the array input vectaz(t) can be expressed as
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where A ands(t) are called the array response matrix (mode matrix) and the signal vector, respectively,
andn(t) is the internal additive noise vector.

2.2 EM Algorithm

The EM algorithm is the method based on maximum-likelihood estimation[2]. In the EM algo-
rithm, iterative calculation is carried out for getting DOAs from unobservable complete data rather than
observed incomplete datgt). Each iteration consists of two steps: E-step (expectation) which approx-
imates the complete data by conditional expectation and M-step (maximization) which maximizes the
likelihood of the complete data. Thmth iteration of the EM algorithm proceeds as follows.



E-step: The maximum likelihood estimate of complete daifﬁ‘)(t) is calculated by using the DOA
estimate9|(m) and the complex amplitude estimaaf@)(t) of thelth wave, which is given by

2" (t) = SV Oa@™) + glzt) - AMsM@)] (=12 -, L) (3)

Wherea(el(m)) is the response vector of tiid wave at thenth iteration, andA(™ is the corresponding
array response matrix. Alsg@,is a non-negative cdkcient of noise term, and itfects the convergence
characteristics.

M-step: The updated value@{m”) and s1(m+1)(t) of the Ith wave are obtained by using the covariance

matrix of complete dataCI(m) =E [a:l(m)(t)ml(m)(t)H] , as shown below.

a(@™HHzM (1)

(m+1) (t) = D D
a(9| ) a(9| )

(=12 ---,L) @&

H (M)
(mel) a(6)"C; 7 a(h)
o =AM a@

Both E-step and M-step above-mentioned are repeated until estimated parameters converge.
3. Adaptive Beamspace Processing

3.1 Beamforming Based on DCMP Criterion

Utilizing the estimated valuﬁm) (=1 2 ---,L)inthe DCMP criterion of the adaptive antenna,
the optimum weight vector for receiving only th wave is computed as follows.
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Here,u = sinel(m), anda(u) is the array response vector with the phase reference at the 1st antenna
element. AlsoRxy is the covariance matrix and in this case it is made up as

—
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wherea is a small positive number (pseudo noise powerRQy to be non-singular. Using, yields an
array pattern with the mainlobe in the direction of tttewave and nulls in the other waves. In addition,
it is possible to control the whole ability of creating nulls by adjustnigp Eq.(7). For example, small
value ofa gives deep nulls, while large value @fcontributes to making almost only mainlobe.

When the number of beams formed for thieincoming wave is three, the beamforming maii
is constructed as follows by using the weight veaigr

(8)

W = ['wln (U| - %) win(U), win (U| + %)

In Eq.(8), win is the normalizedw, with |lw||. W, is applied th:I(m)(t) as VVIHwI(m)(t), leading to
beamspace EM.

3.2 Broad Null in Beam Patterns

In this paper, we introduce the broad null into the DCMP beam patterns. This is a countermeasure
to the estimation error, and we add nulls in the directions shifted2syfrom each estimated angle of
incoming waves which are suppressed. We apply this broad null to the DCMP when the number of
iterations of EM is within five times.



4. Performance Analysis by Computer Simulation

Under conditions shown in Tables 1-3, the computer simulation is carried out to clarify the per-
formance of the proposed algorithm. For DOA estimation, the EM algorithms using elementspace
beamformer, DFT-beamspace beamformer[4] and DCMP-beamspace beamformer are compared. As
the evaluation measure of estimated results, RMSE (root mean square error) is used, which is calculated
through 200 independent trials. The number of incoming waves is assumed to be estimated exactly in
any simulation of DOA estimation.

First, the convergence characteristics of various EM algorithms are examined when the incoming
waves are coherent and their DOAs are closely spaced. The radio environment is described in Table
2. The incoming waves are perfectly out of phase and completely correlated with each other. Figure 2
shows an example of the DCMP beam patterns which receive only the waveliwébtion. The results
of estimation are shown in Fig.3 along with Cramer-Rao bound (CRB) [5]. From the figure, it is found
that the convergence rate becomes rapid by employing the adaptive beamspace processing using DCMP
with @ = 1076,

Next, the performance to the initial value error of various EM algorithms is examined. The radio
environment is described in Table 3. In this simulation, the initial value églisran independent uniform
random number [QA#] for each incoming wave, and} is set as shown in Table 3. In addition, the broad
null is used in the beam patterns. Figure 4 illustrates an example of the DCMP beam patterns which have
the broad null in the direction of 30As a result, Figure 5 shows the convergence of RMSE of estimates
in the case of\@ = 10°, and Figure 6 shows the RMSE of estimates versus the initial value error when
the number of iterations of EM is three. From the figures, it is confirmed that DCMPawétH.0° and
DCMP with @ = 107 and the broad null provide good performance.

Table 1: Simulation conditions. Table 2: Radio environment 1.
Array configuration | Uniform linear array of DOA from array broadsidé (0°, 10°)
isotropic elements Initial value of EM (-5°, 15°)

Element spacing 0.51

Number of elements 8 _ _
Number of beams | 3 Table 3: Radio environment 2.

Number of waves | 2 DOA from array broadside (0°, 30°)
SNR 20dB Initial value of EM (0° + e, 30° — Be)

5. Conclusion

Via computer simulation of DOA estimation, we have investigated the performance of the EM algo-
rithm with the beamspace processing using DCMP criterion. In the convergence characteristics, DCMP-
beamspace EM has shown high speed of convergence. In the characteristics to the initial value error, even
if the error is large, it is possible to estimate DOAs successfully by adjust{pgeudo noise power) and
introducing the broad null into the beam patterns. As the future work, we will examine how to set the
initial values of EM involving the estimation of the number of waves.
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Figure 2: Multibeam patterns using DCMP for re-
ceiving the wave from Oand suppressing the one
from 10°.
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Figure 3: Convergence of RMSE of estimates.Figure 4. Multibeam patterns using DCMP which
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Figure 5: Convergence of RMSE of estimates. Figure 6: RMSE of estimates vs. initial value error.

(8=1,A0 = 10, and broad null is used.)

(8 = 1, the number of iterations of EM is three.)



