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Abstract� This paper presents the characteristics
of the power spectral density (PSD) of chaotic sig-
nals generated by a one-dimensional piecewise linear
map. The majority of previous research on chaos show
that chaotic signals are rather broadband with impul-
sive auto-correlation sequence (ACS). However, recent
studies of the skew tent map [4, 5] have shown that the
PSD and ACS are modi�ed according to certain values
of the bifurcations. We propose to extend this work to
other maps and to study relations between bandwidth
and Lyapunov exponents.

1. Introduction

The chaotic signals are aperiodic signals and have a
sensitivity to initial conditions (SIC) [1]. The sensitiv-
ity to initial conditions means that the signals obtained
with similar initial conditions can become very di�er-
ent when the number of iterations tends to in�nity.
Usually in the existing publications the chaotic signals
are characterized by an impulsive auto-correlation se-
quence (ACS) and they have a broadband frequency
[6, 9, 12]. Using this property, di�erent applications
have been considered with chaotic signals. Anyhow, it
is possible to construct chaotic signals with di�erent
kinds of bandwidth, this is one of our purposes in this
paper. So, chaotic signals could be used for other ap-
plications than those implying broadband frequency.

The spectral analysis of signals is used in several
domains to extract information and verify the distri-
bution of energy or power in the frequency range [10].
Spectral models are used in many processes of modula-
tion, voice processing, compression and voice recogni-
tion [7]. In medicine, the spectral analysis of electro-
cardiograms and electroencephalograms may provide
useful information in diagnostics [10]. Spectral analy-
sis of signals is also crucial in the �eld of telecommuni-
cations. The specters must be known and clearly de-
�ned, due to insu�cient frequencies available for com-
munication and limited frequency bands in guided me-
dia. In this paper, we propose to study the possibility

to obtain chaotic signals with di�erent types of band-
width, using signals obtained from a discrete-time dy-
namic system. We have chosen a piecewise linear map
depending on parameters for which previous studies
have shown that chaotic signals can be observed [3].

2. One-dimensional piecewise linear map with

two parameters

We will be more particularly interested in a one-
dimensional map depending on two parameters, mod-
eled under the following form:

xn+1 = f(xn, k, φ), (1)

with n ∈ ℵ; xn ∈ I interval of <; k and φ ∈ <.
We will try to �nd a relation between the di�erent
possible forms of chaotic attractors, the Lyapunov ex-
ponent and the power spectral density (PSD). We con-
sider the speci�c map f : [−1, 1] → [−1, 1] proposed
in [3]: {

zn = mod((k.|xn|) + φ, 1)
xn+1 = sign(xn).((2.zn)− 1)

(2)

which depends on two parameters φ and k (cf. Fig.1).
The parameters can be changed to produce di�erent
sequences, (0 ≤ k ≤ 2) and (0 ≤ φ ≤ 2). Due to an
obvious symmetry property [3], the initial condition
x0 will be chosen in the interval 0 < x0 <

1
k .

2.1. Bifurcation diagram

A fundamental problem of nonlinear dynamics is the
study of bifurcations in the parameter space. A bifur-
cation corresponds to a qualitative change in the be-
havior of the system when one parameter, for instance
φ, crosses through a critical value φb. A bifurcation
may correspond to the appearance or disappearance
of new singularities, or also to the change in the shape
of a chaotic attractor.
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Figure 1: Chaotic map (2) with (k = 1, φ = 0.35),
(k = 1, φ = 0.44) and (k = 0.8, φ = 0.9).

2.2. Lyapunov exponent

The Lyapunov exponent measures the sensitivity to
initial conditions. When the Lyapunov exponent of f
(f di�erentiable) exists, it is de�ned by:

λ = lim
N→∞

1

N

(
N−1∑
n=0

ln
∣∣∣f ′

(x(n, x0))
∣∣∣) (3)

The sequence generated by (1) is chaotic if the Lya-
punov exponent is positive. When f is piecewise linear
or piecewise a�ne, it is also possible to calculate the
Lyapunov exponent. The value of the Lyapunov expo-
nent is given in [3], it only depends on the parameter
k as indicated by the following equation:

λ = ln(2k) (4)

When k is �xed and φ varies in the interval [0, 2],
we can see that the chaotic attractor changes its shape
(cf. Fig.1), but the Lyapunov exponent is positive and
remains constant (cf. Fig.2).

Figure 2: k = 1, φ ∈ [0, 2]

In Fig. 3, φ is constant and k varies in the interval
[0, 2], then we obtain a chaotic attractor with a di�er-
ent appearance and the Lyapunov exponent increases
with k.

Figure 3: φ = 0.9, k ∈ [0, 2]

3. Spectral analysis

Some calculations of the spectrum of a chaotic signal
are given in [11, 5, 8, 2]. The chaotic signals generated
by a particular map can be considered as determin-
istic individual signals or as sampling functions of an
ergodic stochastic process. These two types of presen-
tation give rise to di�erent steps when calculating the
PSD. In this paper, we consider a discrete time signal,
both as deterministic and random. Using the function
f(.) of equation (2) and an initial condition x(0) = x0,
the sequence x(n, x0) is de�ned when n > 0 and the
autocorrelation can be calculated by:

R(m,x0) = lim
N→∞

1

N

N−1∑
n=0

x(n, x0).x
∗(n−m,x0) (5)

such as x∗ is the conjugate of x. In this formula, m
is an integer and x(n−m,x0) = 0 when (n−m) is a
negative number. The power spectral density X(f, x0)
can be obtained by applying the Discrete-Time Fourier
Transform (DTFT) to R(m,x0) considering m as the
time variable:

X(f, x0) =

∞∑
m=−∞

R(m,x0)e
−jwm

(6)

To analyze the signal by computer simulations, we
use a Welch's method to determinate an estimation of
the spectral density. This method starts by dividing
the time series data into segments, then computing
a modi�ed periodogram of each segment and �nally
averaging the PSD estimates.
In Fig.4 and Fig.5, we have simulated the map (2)

with di�erent initial conditions and di�erent values of
parameters k and φ. These �gures contain the orbits,
the histogram (the vertical axis concerns the number of
x values), the autocorrelation sequence and the power
spectral density with N = 20000.
Fig.4 is obtained with the �xed parameter values

φ = 0.35 and k = 1 but with the change of the initial
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Figure 4: φ= 0.35, k= 1

condition. We can remark that when we change the
initial condition, there is no e�ect on the histogram,
the autocorrelation and the power spectral density.
This result is normal because the chaotic attractor re-
mains the same whatever the initial condition.

In Fig.5 we have used one color for each line. In
the �rst line with a blue color (k = 1, φ = 0.15), we
can notice that the values of x vary inside an inter-
val smaller than [-1,1], the autocorrelation sequence
has a positive peak at 0 and the spectrum is low pass.
In Fig.2, the bifurcation diagram shows that for the
considered parameter values, the chaotic attractor oc-
cupies [−0.7, 0.7] a smaller range in [−1, 1].
In the second line of Fig.5, we have simulated the

red curves for k = 1 and φ = 0.44, the distribution of
points is given in two intervals and the number of x
values is very low when xn is close to zero. In Fig.2,
we can see a hole around the value x = 0. The ACS
has a positive impulse and two negative impulses, the
spectrum is high-pass.

In the third line of Fig.5, we have chosen k = 1.9,
φ = 0.9 and the curves are drawn in green. The points
are distributed in all the interval [−1, 1] (cf. Fig.3),
the ACS has a positive peak which tends to zero very
quickly. This chaotic signal is broadband.

In the fourth line we have found a chaotic sequence
with a bandpass spectrum. The ACS of this se-
quence has two negative impulses as Rx(m,x0) ' −0.4
and the x values is distributed on three intervals (cf.
Fig.3).

4. Relation between Bandwidth and the Lya-

punov exponent

The bandwidth B of a signal can be determinated by
the essential bandwidth de�ned as the frequency range
where 95% of the total signal power is concentrated [5].

We use here a normalized version of frequency such as
0 ≤ B ≤ 1.
After several simulations, we have found that the
bandwidth is independent of the Lyapunov exponent
for the map we have studied. When k is �xed and
φ varies, we obtain di�erent curves of the DSP with
di�erent bandwidths. For example, when we consider
(k = 1, φ = 0.15), the PSD is low-pass with a very low
bandwidth (B ' 0.25) and for (k = 1, φ = 0.44), the
PSD shows a high pass bandwidth (B ' 0.75).

5. Conclusion

In the work of M.Eisencraft et al. [4], the authors
identi�ed two types of bandwidth (low-pass and high-
pass) for the skew tent map. By using the map (1)
[3], we have found several types of bandwidth. So, we
have shown that it is possible to obtain di�erent pos-
sible bandwidths using chaotic signals. Such signals
can thus be used, depending upon the application we
consider.
We intend to continue our work �rst by trying to cal-
culate the PSD in an analytical way to facilitate the
selection of the bandwidth, secondly by considering
other kinds of maps, not only piecewise linear.
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