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Abstract —The inverse problem under consideration is to 
reconstruct the characteristic of scatterer from the scattering E 
field. Steady-state genetic algorithm (SSGA) and asynchronous 
particle swarm optimization (APSO) are stochastic-type 
optimization approach that aims to minimize a cost function 
between measurements and computer-simulated data. Thus, the 
shape of metallic cylinder can be obtained by minimizing the 
objective function. After an integral formulation, a discretization 
using the method of moment (MoM) is applied. Numerical results 
indicate that the asynchronous particle swarm optimization 
(APSO) outperforms steady-state genetic algorithm (SSGA) in 
terms of reconstruction accuracy and convergence speed. 

Index Terms —Inverse Scattering, Asynchronous Particle 
Swarm Optimization, Partially Immersed Conductor. 

I. INTRODUCTION 

Microwave imaging is an application of electromagnetic 
inverse scattering that is capable of performing noninvasive 
evaluation on a test object and determining its shape and/or 
material properties. The application of electromagnetic 
scattering to retrieve the shape, location, and the property of 
an unknown scatterer embedded in a homogeneous space or 
buried underground has shown great potential in several 
application areas such as medical tomography, geophysics, 
non-destructive testing and object detection [1]-[5]. 

From a mathematical point of view, inverse problems are 
intrinsically ill-posed and nonlinear. Hence, only a finite 
number of parameters can be accurately retrieved. To stabilize 
the inverse problems against ill-posedness, usually various 
kinds of regularizations are used which are based on a priori 
information about desired parameters. On the other hand, due 
to the multiple scattering phenomena, the inverse-scattering 
problem is nonlinear in nature. Therefore, when multiple 
scattering effects are not negligible, the use of nonlinear 
methodologies is mandatory.  

Inverse scattering problems are usually cast into 
optimization ones. There are usually two types of optimization 
schemes to solve the inverse scattering problems: the 
deterministic one and the stochastic one. The former has been 
developed for decades, such as the contrast source inversion 
conjugate-gradient method [6], distorted Born iterative 
method (DBIM) [7] and other gradient-type methods [8] etc. 
The stochastic methods usually employ a group of initial 
guesses and use certain stochastic procedure to minimize the 
cost function, such as the genetic algorithm (GA) [9]-[10] and 
various evolutionary optimization ones. The application of 
population-based optimization techniques increases the 
capability of finding the global minimum rather than being 
trapped in a local minimum as the deterministic optimization 
techniques are. Stochastic procedure provides a more robust 
and efficient approach for solving inverse scattering problems. 
Particle swarm optimization (PSO) has proven to be a useful 
method of optimization for difficult and discontinuous 
multidimensional engineering problems due to its efficiency 
of exploring the entire search space. Besides, PSO had been 
applied for inverse scattering problems [11]-[12]. In additions, 
GA and PSO were utilized to search the global extreme of the 
inverse scattering problem to overcome the drawback of the 
deterministic methods. 

Recently, inverse scattering problems are usually 
considered in optimization-based procedures on transverse 
magnetic (TM) cases [9]-[14]. It’s been recognized that the 2-
D TE problems include two orthogonal electric field 
components in the transverse plane and thus leads to a 
vectorial mathematical formulation. Therefore, the 
computational load for exploiting such positive features is 
unavoidably increased as compared to the TM case with only 
one electric field component.  In other words, the TE-
polarized case includes polarization charges at dielectric 
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discontinuities, which are more difficult to model numerically. 
However, there are advantages of utilizing the TE-polarized 
data (as compared the TM-polarized ones) since they may 
contain more useful information about the object of interest 
data. It should be noted that these two polarizations are 
physically uncoupled and they provide independent 
information about the object being imaged [15]. 

In this paper, the inverse scattering problem of the partially 
immersed perfectly conducting cylinder by TE wave 
illumination is investigated. We use the APSO to recover the 
shape of a partially immersed perfectly conducting cylinder. 

II. DIRECT PROBLEM 

Let us consider a perfectly conducting cylinder which is 
partially immersed in a lossy homogeneous half-space, as 
shown in Fig. 1. Media in regions 1 and 2 are characterized by 

permittivities and conductivities ),( 11  and 2 2( , )  
respectively. In our simulation, a priori information is 
assuming that scatterer is a metallic cylinder. A perfectly 
conducting cylinder is illuminated by a TE plane wave. The 
cylinder is of an infinite extent in the z direction, and its cross-
section is described in polar coordinates in the x, y plane by 
the equation F . We assume that the time dependence 
of the field is harmonic with the factor tje . Let in cH  denote 
the incidence field form region 1 with incident angle 1  as 
follow: 

1 1 1( cos sin ) ˆinc jk y xH ze                        (1) 

Owing to the interface between regions 1 and 2, the incident 
plane wave generates two waves that would exist in the 
absence of the conducting object. Thus, the unperturbed field 
is given by  
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The total magnetic field at any point in measured space can be 
expressed as: 
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Where 1 ( , )sH x y and 2 ( , )sH x y are the scattering field of region 
1 and region 2, respectively. 
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Fig. 1. Geometry of the problem in (x,y) plane 

For a perfectly conducting scatterer, the total tangential 
electric field at the surface of the scatterer is equal to zero.  

1( )totn  H 0
j                  

(4) 

with tot i sH H H , where n̂  is the outward unit vector 
normal to the surface of the scatterer and sH  is the scattered 
field.For the direct scattering problem, the scattered field sH  
is calculated by assuming that the shape is known. For the 
inverse problem, assume the approximate center of scatterer, 
which in fact can be any point inside the scatterer, is known. 
Then the shape function )(F  can be expanded as: 
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             (5)        

where
nB  and 

nC  are real coefficients to be determined, and 

N+1 is the number of unknowns for the shape function. More 
details about the Fourier expassion can be found in [16]. In the 
inversion procedure, the SSGA and APSO are used to 
minimize the following cost function  
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where
tM  is the total number of measurement points. 

( )s
exp mH r and ( )s

cal mH r  are the measured and calculated 
scattered fields, respectively. 

III. INVERSE PROBLEM 

APSO starts with an initial population of potential solutions 
that is composed by a group of randomly generated 
individuals. Each individual is a D-dimensional vector 
consisting of D optimization parameters. Clerc suggested the 
use of a different velocity update rule, which introduced a 
parameter called constriction factor [17]. The role of the 
constriction factor is to ensure convergence when all the 
particles tend to stop their movement. The velocity update 
rule is then given by 

1
1 1 2 20.729

j

k k k k k k
j j pbest j gbest jv v c x x c x x (7)

1 1k k k
j j jx x v

!
0 ~ 1pj N (8) 

4cc 21  

1c and 2c  are the learning coefficients used to control the 
impact of the local and global component in velocity equation 

(5), 1  and 2  are both random numbers between 0 and 1. 
More details about the APSO algorithm can be found in [17]. 

IV. NUMERICAL RESULTS 

We illustrate the performance of the proposed inversion 
algorithm and its sensitivity to random noise in the scattered 
field. Let us consider a perfectly conducting cylinder buried in 
a lossless half-space ( 021 ). The permittivity in 

each region is characterized by 1 0 and 2 02.7 , 
respectively. The frequency of the incident wave is chosen to 

be 3GHz with incident angles 1  equal to - 45 , 0 and 45 , 

respectively. The wavelength 0  is 0.5 m. To reconstruct the 
shape of the cylinder, the object is illuminated by incident 
waves from three different directions and  8 measurements are 
made for each incident angle at the points equally separated on 
a semi-circle with the radius of 3m in region 1 along the 
interface ay , which is considered here as a test 
configuration for future application of landmine detection. The 
related coefficients of the APSO are set below. The learning 

coefficients 1c  and 2c  are set to 2.8 and 1.3, respectively 
[18]. The mutation probability is 0.1 and the population size is 
set to 70. The operations coefficients for the NU-SSGA 
algorithm are set as below: The crossover probability and the 
mutation probability are set to be 0.02 and 0.05 respectively. 

The population size Np is the same with APSO. The searching 
range for the unknown coefficients is chosen from 0 to 1.0.  

It should be noted that the termination criterion is set to 
1000 generations in our simulation based on our empirical rule. 

The relative error of shape function (RE) of the 
reconstructed shape is defined as 

2/122
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RE          (9) 

In the example, the shape function is chosen to be 
( ) (0.1 0.04cos2 )F  m. The statistical performances 

(of 20 runs) of two algorithms applied for example. In this 
case, the best final reconstructed shapes by NU-SSGA 
algorithm and APSO scheme at the 1000th generation are 
compared to the exact shape in Fig. 2. Fig. 3 shows that the 
reconstruction relative error versus the number of iterations by 
NU-SSGA algorithm and APSO, respectively. The APSO 
outperforms the NU-SSGA regarding the reconstruction 
accuracy. The reason for this is following: being a population-
based algorithm, APSO maintained it's individuals/particles 
distinct from each other, while SSGA loses its gene diversity 
of the gene pool by reproducing more offspring from the best-
fitted chromosomes. 
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Fig.2.The reconstructed shape of the cylinder for example 
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Fig. 3.   Shape function error in each generation. 

V. CONCLUSIONS 

We have presented a study of applying the APSO and NU-
SSGA to reconstruct the shapes of a partially immersed 
conducting cylinder illuminated by TE waves. The inverse 
problem is reformulated into an optimization one. Numerical 
result shows the APSO has better reconstructed result 
compared with NU-SSGA when the same number of iterations 
is applied, and the APSO outperforms the NU-SSGA in terms 
of the reconstruction accuracy. More tests about these 
evolutionary algorithms will exam to 3-D cases in the future 
researches. 
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