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Abstract—In this paper, we propose a method for deciding the 
parameters to satisfy the experiment values, and also checked the 
effectiveness of this method based on Kramers-Kronig relation. 
In our proposed method, we are expressed as matrix the 
Sellmeier formula, and are solved the simultaneous equation 
until the satisfied experiment curve. Numerical results are given 
by the influence of pulse responses utilizing the fast inversion of 
Laplace transform (FILT) 
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I.  INTRODUCTION  
Recently, the inverse scattering problem of electromagnetic 

waves has been of interest in many areas of remote sensing and 
imaging technology. In particular, the ground penetrating 
rader[1]-[3] is known as technology which can investigate the 
geometry in the soil. From the humanitarian support and land 
mine removal activity, these researches are widely performed 
in the world. Then, we are required to examine without 
destroying the target object buried in the soil. Therefore, it is 
very important to investigate the wave reflected from the 
scatterer such as target objects. 

In this paper, we analyze the pulse responses of the 
structure buried the perfect conductor in the dispersion medium 
by using the experiment value of the dielectric constant in the 
1.2g/cm3 equivalent dry density of gray San Antonio clay 
loam[4]. However, in order to analyze the pulse responses with 
high accuracy, it is necessary to uniformly treat the complex 
dielectric constants of the dispersion media exactly. Though it 
is analyzed the inverse scattering problem such as buried mine-
like target object by utilizing the FDTD method and various 
numerical techniques[1,3], it is not given the complex dielectric 
constants with a function of frequency in detailed. And so, we 
are employed the Sellmeier’s formula[5] as a permittivity of 
dispersion media. But, it was difficult to determine the 
parameters including the above formula. In the purpose of this 
paper, we propose a method for deciding the parameters to 
satisfy the experiment values[4]. In our proposed method, we 
are expressed as matrix the Sellmeier’s formula and 
orientational polarization, and are solved the simultaneous 
equation until the satisfied the experiments values, and also 

have checked effectiveness of this method based on Kramers-
Kronig relation. 

Numerical results are given for the influence of pulse 
responses using the medium constants which can be found by 
proposed method. Also, numerical technique of pulse 
responses is employed the fast inversion of Laplace transform 
(FILT)[8,9]. 

II. METHOD OF ANALYSIS 
We consider the two dispersion media embedded with the 

perfect conductor at 1 2x d d= +  as shown in Fig.1. The 
structure shown in the figure is uniform in the z-direction. 

The dielectric constants of regions 0S , 1S , and 2S  are defined 
by 0e , 1( )se , and 2 ( )se , respectively. The permeability is 
assumed to be 0m  in all regions. The waveform of incident 
pulse at 0x =  is assumed to be sine pulse and it can be 
expressed as[10] 
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0 ( ) [ ( ) ( )]sin 2i

w we t u t u t t t tp= - - , (1) 
where wt  is pulse width and ( )u t  is a unit step function. 
To analyze the complex frequency domain, image function 
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Fig.1 Structure and Coordinate system 
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 The electric fields in the regions 0 ( 0)S x £ , 

1 1(0 )S x d< £ , and 2 1 2( )S d x d< £  are given by  
 0 0(0) ( ) ( )

0( ) ( ) ( )i k x r k x
z zE s E s e E s e-= + , (3) 

 1 1(1)
1 1( ) k x k x

zE s A e B e-= + , (4) 
 2 2(2)

2 2( ) k x k x
zE s A e B e-= + , (5) 


0k s c ,  
1 0 1 0( )k k se e ,  

2 0 2 0( )k k se e , (6) 

where  0k , 1k , and  2k  are the wave number, and the 
propagation constants in the x-direction of regions 0S , 1S  and 

2S . From the boundary conditions at 0x = , 1x d= , and 

1 2x d d= + , we obtain the reflected waves as the following 
equation: 
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where   1 12
12 231( ) k dC s e R R- + ,   1 12

23 122 ( ) k dC s R R e-+  
12 1 1[1 ( )] [1 ( )]R s se e- + ,  23 2 2[1 ( )] [1 ( )]R s se e- + . 

Here, dielectric constant of dispersion media ( )m se  is 

expressed as Sellmeier’s equation and orientational 
polarization considering the moisture [10]. 
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The parameters of Eq.(8) are , , 1,3 0( , , ) , ( , )i i l i l i lq g t t=W . 
Substituting s jw=  into Eq.(8), we get the complex dielectric 
constants as follows[10]: 
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where the real and imaginary parts of complex dielectric 
constants are given by Eqs.(10) and (11). 
 In the case of real part, we are obtained the parameters by 
the following the procedure [10]. 
(1)First, we can be rewritten by matrix representation in 
Eq.(10) as following equation: 
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(a) The real part ( )re w¢                                                                      (b) The imaginary part { }0( ) ( )rs w e w e w¢¢=  

Fig.2 Comparison of complex dielectric constants for parameters ① and ②. 
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                            (a) Pulse responses for parameters ① and ②                                                   (b) Convergence of 1 N  for parameter ② 

Fig.3 Pulse responses and convergence of the FILT for the truncation mode number 1 N . 
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( ) ( )
0

l l =A x B , (12) 
where superscripts (l) indicate the iteration number of 
computing, 
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2 2 2
1 2 3 0[ , , , ]Tq q q t=x  , 1 2 3 4[ , , , ]Tb b b bB  , T: transpose. 

Matrix ( )lA  is 4 4´ coefficients matrix except parameters 2
iq  

and 0t , matrix B  is experiment value against frequency w . 
We have solved the simultaneous equation by using both the 
chosen parameters , , 1~3( , )i l i l ig =W , lt  and B of arbitrary four 
points w . In numerical analysis, we choose four sampling 
points in the frequency range of between 30MHz and 
3840MHz given by the reference [4]. In fact, we have chosen 
the frequency four points at 1 30[MHz]f = , 2 120[MHz]f = , 

3 960[MHz]f = , and 4 3840[MHz]f = [10]. 
(2)Second, we are calculated Eqs.(10) and (11) for real and 
imaginary parts by using the parameters obtained in above 
process. The next is found the errors r  between both 
experiment and calculated values by using parameters obtained 
in the four points of real and imaginary parts corresponding to 
the frequency of matrix B . If the result cannot be satisfied 

4| | 10r -£ , the elements of coefficients matrix A  is changed 
by following equation: 

, 1 , , 1 , 1, ,i l i l i l i l l lg g g t t t+ + +W ®W + DW ® + D ® + D . (13) 
Here, values of changing parameters ( DW , gD , tD ) are added 
to 310-  order. 
Then, it is solved a simultaneous equation again. 
(3)Third, if the condition 4| | 10r -£  can be satisfied, we are 
performed for both real and imaginary parts as following 
condition in the middle three points of four points[10]: 

( ) 0rd
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e w
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d
s w
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> . (14) 

If the results of an above condition cannot be satisfied, we 
return to procedure (1). If it is satisfied Eq.(14), next is 

progress. 
(4)Finally, K. K. relation is employed as a check of the results 
obtained from these procedures. K. K. relation[7] is given by 
following equations: 
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In particular, we checked the influence for upper limit L of 
integration range and its frequency characteristics curve by 
utilizing the K. K. relation, and it has estimated whether real 
part to imaginary part is satisfied. These analyses are evaluated 
by using the numerical integral. In the numerical analysis, 
upper limit of integral range is truncated by L  to be 
determined from convergence of integrand. If the results can be 
satisfied to experiment curve, we can be obtained the 
parameters for dispersion medium. In fact, the results of soil 
moisture with a water ratio of 10% found from in above 
procedure are as follows: 

The electric field ( ) ( )r
zE s  using these parameters is 

transformed into the normalized time domain by utilizing the 
FILT[8,9]. 
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N is truncation mode number of the FILT, p is the number of 
terms in the Euler transformation, S  is normalized complex 
frequency, and T  is normalized time. We evaluate Eq.(17) to 
transform the reflective pulse responses in the time domain. 
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Fig.4 Pulse responses for condition of center frequency 0 1f = [GHz] 
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III. NUMERICAL RESULTS 
Figures 2(a) and (b) show frequency characteristics for 

complex dielectric constants as the condition of San Antonio 
soil moisture with water ratio 10%. In this figure 2, the square 
plots ( ) show experiment value in the San Antonio soil 
moisture with water ratio 10%, dashed line ( ) is the result 
of parameter ① which is found by average of experiment value, 
black solid line is the result of parameter ② which is found by 
proposed method, and it is shown that the results of plotted 
( × ) are calculated utilizing the K. K. relation which is 
truncated by 11( 2 10 )L p= ´ . In addition, we are shown the 
results of only Sellmeier’s equation by plotted blue line. From 
the Fig.2, we can see the following features: 
(1)The results can be see the good agreement for between 
parameter ② and experiment value. 
(2)The results of K. K. relation and parameters ① and ② can 
be seen clearly the good agreement. 
(3)As the results of only Sellmeier equation, we can see the 
good agreement for experiment value in the real part. However, 
we can see an influence of orientational polarization in the 
imaginary part. 
Therefore, in order to investigate the effects of parameters ① 
and ② , next we will be investigated the influence of 
parameters ① and ② by the pulse responses. 

Figure 3(a) shows the pulse responses for parameters ① and 
②  as a condition of fixed normalized distance 

0( ( ) ) 0.5wD d ct d l= =  and 0 1[GHz]f = . From the 
Fig.3(a), we can see the following features: 
(1)The initial pulse response at the 0 1T< £  is almost same 
as for both parameters ① and ②. Since it is the response from 
the soil surface, we cannot see the influence of dispersion 
media. 
(2)The response of 2T ³  is reflection from the perfect 
conductor. The influence of parameters can see clearly that it 
appear at both the amplitude and phase. In order to investigate 
the difference of parameter, next Fig.3(b) shows the 
convergence of ( ) ( )r

ze T  versus 1 N  for fixed 3.2T = . From 
this Fig.3(b), the relative error of ( ) ( )r

ze T  to the extrapolated 
true value are less than about 1% when we computed with 

50N =  and 10p = . 
Therefore, we can see that difference of the response for both 
parameters ① and ② as shown in Fig.3(a) is obtained by the 
effect of complex dielectric constants. We also obtained the 
dispersion medium parameters of the soil moisture 5% and 
20% using the proposed method. 

Figures 4(a) shows the pulse responses for various 
dispersion media with soil moisture 5%, 10%, and 20% as a 
condition of center frequency 0 1f = [GHz] and dispersion 
medium 1 2( ) ( )s se e=  and 1 2d d= . From this figure, we can 
see the following features: 
(1)The reflection responses ( 1T < ) from the soil surface are 
obtained the difference of amplitude. As this reason, we can 

consider as the influence of equivalent permittivity of 
dispersion media by a real part. 
(2)The reflection responses ( 1.5T ³ ) from the perfect 
conductor can see clearly that it is difference by the amplitude 
and phase. As a reason of these results, we can consider that 
the difference appears by the influence of the real part at the 
delay time. On the other hand, we can understand that the 
amplitude is difference by the influence of the imaginary part. 

Figure 4(b) shows the result of pulse responses for two 
dispersion media as a condition of 0 1f = [GHz] and 

1 2 0.25D D= = . The black solid line is the result of 5% as 
shown in Fig.5(a), the red dashed line is result for the mixed 
dispersion media such as region 1S  of soil moisture 5% and 
region 2S  of soil moisture 10%, and blue dashed line is the 
result for mixed dispersion media 5% and 20%. From in 
Fig.4(b), we can see the following features: 
(1)The responses from soil surface of mixed dispersion media 
for 5% and 10% are same as result of 5%. But, the responses 
from different dispersion media and perfect conductor can see 
the effect of both dispersion media and normalized distance. 
(2)The responses from soil surface of two dispersion media for 
5% and 20% are bigger than that of another media. As a reason, 
we can understand as influence of dispersion media with soil 
moisture 20% such as equivalent permittivity. 

IV. CONCLUSION 
In this paper, we proposed a method for deciding the 

parameters to satisfy the experiment values, and also checked 
the effectiveness of this method, based on the Kramers-Kronig 
relation. We also investigated the influence of pulse responses 
for the dry density of gray San Antonio clay loam using the 
medium constants which can be found by proposed method. 
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