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Abstract—In this study, we propose a subgridding technique
in the constrained interpolation profile (CIP) method in order
to simulate electromagnetic fields in the presence of objects with
fine structures. The subgridding technique consists of spatial and
temporal interpolations at the interface between main coarse
grids and local fine grids. In the present study, we consider
a two-dimensional problem with TMz polarization. In order
to examine the validation of the proposed method, spatial and
temporal interpolation schemes are implemented separately. The
numerical results show that both the interpolation schemes
operate successfully, and the relative errors are extremely small
in wide frequency band.

I. INTRODUCTION

The constrained interpolation profile (CIP) method has
been developed to analyze multi-phase problems[1], and
applied to electromagnetic problems successfully. Various
techniques for solving electromagnetic field problems have
been reported, e.g. the perfectly matched layer[2], the total-
field/scattered field boundary[3], etc.

Numerical methods based on the finite-difference[4], or the
finite element methods have the nature in which the compu-
tational costs increase with finer grids used. The subgridding
technique allows us to analyze fine structures with relatively
low computational costs. It uses the local sub-grid region
which has smaller cells than the main grids, and we can
localize the finer grids region to decrease the computational
burden. Although the unstructured grids technique for the CIP
method has been developed as the Soroban grids[5], it does
not localize the region with the small times step, and it losts
the advantage.

In this study, we propose the subgridding technique for the
CIP method. Xiao et al.[6] proposed the separate boundaries
where the temporal and the spatial interpolations are used, and
we use the concept in this study.

II. THE CIP METHOD FOR 2-D TMz EM SIMULATION

Consider electromagnetic fields of TMz waves in the free
space (the permittivity and the permeability are ε0 [F/m] and
µ0 [H/m], respectively). Here we introduce normalized field
variables ez , hx, and hy:

ez =
√
ε0Ez, hx =

√
µ0Hx, and hy =

√
µ0Hy, (1)

where Ez , Hx, and Hy are the usual electric and mangetic
fields in [V/m] and [A/m], respectively. The Maxwell equations

are written in the matrix form:

∂

∂t

[
ez
hx
hy

]
+

∂

∂x

[
0 0 −c0
0 0 0
−c0 0 0

]
•

[
ez
hx
hy

]

+
∂

∂y

[
0 c0 0
c0 0 0
0 0 0

]
•

[
ez
hx
hy

]
= 0, (2)

where c0 is the speed of light in vacuum.

Applying the directional splitting technique to the Eq. (2),
we have two equations corresponding to the advection in the
x- and the y-directions, as follows.

∂

∂t

[
ez
hy

]
+

∂

∂x

[
0 −c0
−c0 0

]
•
[
ez
hy

]
= 0, (3)

∂

∂t

[
ez
hx

]
+

∂

∂y

[
0 c0
c0 0

]
•
[
ez
hx

]
= 0, (4)

Diagonalizing the matrices including c0 gives

∂

∂t

[
f+
x

f−x

]
+

∂

∂x

[
c0 0
0 −c0

]
•
[
f+
x

f−x

]
= 0, (5)

∂

∂t

[
f+
y

f−y

]
+

∂

∂y

[
c0 0
0 −c0

]
•
[
f+
y

f−y

]
= 0, (6)

where f±x and f±y stand for ez∓hy and ±ez+hx, respectively.

The CIP method can be used to solve the above advection
equations:

f±,∗x (i, j) = A±,t
x1 f

±,n
x (i, j) +A±,t

x2 f
±,n
x (i∓ 1, j)

+A±,t
x3 g

±,n
x (i, j) +A±,t

x4 g
±,n
x (i∓ 1, j) (7)

g±,∗x (i, j) = B±,t
x1 g

±,n
x (i, j) +B±,t

x2 g
±,n
x (i∓ 1, j)

+B±,t
x3 f

±,n
x (i, j) +B±,t

x4 f
±,n
x (i∓ 1, j) (8)

η±,∗x (i, j) = C±,t
x1 η

±,n
x (i, j) + C±,t

x2 η
±,n
x (i∓ 1, j) (9)

f±,∗y (i, j) =
1

2
(f+,n
y + f−,ny )± 1

2
(f+,∗
x + f−,∗x ) (10)

g±,∗y (i, j) =
1

2
(g+,n
y + g−,ny )± 1

2
(η+,∗
x + η−,∗x ) (11)

η±,∗y (i, j) =
1

2
(η+,n
y + η−,ny )± 1

2
(g+,∗
x + g−,∗x ) (12)

f±,n+1
y (i, j) =A±,t

x1 f
±,∗
y (i, j) +A±,t

x2 f
±,∗
y (i, j ∓ 1)

+A±,t
x3 g

±,∗
y (i, j) +A±,t

x4 g
±,∗
y (i, j ∓ 1) (13)

g±,n+1
y (i, j) =B±,t

x1 g
±,∗
y (i, j) +B±,t

x2 g
±,∗
y (i, j ∓ 1)

+B±,t
x3 f

±,∗
y (i, j) +B±,t

x4 f
±,∗
y (i, j ∓ 1)(14)

η±,n+1
y (i, j) =C±,t

x1 η
±,∗
y (i, j) + C±,t

x2 η
±,∗
y (i, j ∓ 1) (15)
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f±,n+1
x (i, j) =

1

2
(f+,n+1
y −f−,n+1

y )∓ 1

2
(f+,∗
x +f−,∗x ) (16)

g±,n+1
x (i, j) =

1

2
(η+,n+1
y −η−,n+1

y )∓ 1

2
(g+,∗
x +g−,∗x ) (17)

η±,n+1
x (i, j) =

1

2
(g+,n+1
y −g−,n+1

y )∓ 1

2
(η+,∗
x +η−,∗x ) (18)

where g±x , η±x , g±y , and η±y are ∂
∂xf

±
x , ∂

∂yf
±
x , ∂

∂yf
±
y , and

∂
∂xf

±
y , respectively.

III. THE SUBGRID TECHNIQUE FOR THE CIP METHOD

The subgrid technique consists of the temporal and the
spatial interpolations between the main and the local grids. In
this section, we develop them separately.

A. The spatial interpolation technique

Suppose the main and the local grids are located as shown
in Fig. 1. Here we consider the mesh ratio 2.

At the interface between the main and the local grids the
profiles cannot be interpolated because the neighbouring grids
in the upwind direction do not exist. In this study, we use the
average values at the neighbouring main grids. Therefore, the
updating equations are given by

f+,∗
s,x (1, 2k) = A+

x1f
+,n
s,x (1, 2k)

+
1

2
A+
x2

{
f+,n
m,x(i1 − 1, j) + f+,n

m,x(i1 − 1, j + 1)
}

+A+
x3g

+,n
s,x (1, 2k)

+
1

2
A+
x4

{
g+,n
m,x(i1 − 1, j) + g+,n

m,x(i1 − 1, j + 1)
}

(19)

g+,∗
s,x (1, 2k) = B+

x1g
+,n
s,x (1, 2k)

+
1

2
B+
x2

{
g+,n
m,x(i1 − 1, j) + g+,n

m,x(i1 − 1, j + 1)
}

+B+
x3f

+,n
s,x (1, 2k)

+
1

2
B+
x4

{
f+,n
m,x(i1 − 1, j) + f+,n

m,x(i1 − 1, j + 1)
}

(20)

η+,∗
s,x (1, 2k) = C+

x1η
+,n
s,x (1, 2k)

+
1

2
C+
x2

{
η+,n
m,x(i1 − 1, j) + η+,n

m,x(i1 − 1, j + 1)
}

(21)

Fig. 1. The main and the local grids

f−,∗s,x (NXs, 2k) = A−
x1f

−,n
s,x (NXs, 2k)

+
1

2
A−
x2

{
f−,nm,x(i2 + 1, j) + f−,nm,x(i2 + 1, j + 1)

}
+A−

x3g
−,n
s,x (NXs, 2k)

+
1

2
A−
x4

{
g−,nm,x(i2 + 1, j) + g−,nm,x(i2 + 1, j + 1)

}
(22)

g−,∗s,x (NXs, 2k) = B−
x1g

−,n
s,x (NXs, 2k)

+
1

2
B−
x2

{
g−,nm,x(i2 + 1, j) + g−,nm,x(i2 + 1, j + 1)

}
+B−

x3f
−,n
s,x (NXs, 2k)

+
1

2
B−
x4

{
f−,nm,x(i2 + 1, j) + f−,nm,x(i2 + 1, j + 1)

}
(23)

η−,∗s,x (NXs, 2k) = C−
x1η

−,n
s,x (NXs, 2k)

+
1

2
C−
x2

{
η−,nm,x(i2 + 1, j) + η−,nm,x(i2 + 1, j + 1)

}
(24)

where k, l are the indeces, and NXs = 2(i2− i1) + 1, NYs =
2(j2 − j1) + 1. The subscripts, m, s, stand for the variables
belonging to the main and the local grids. The discretized
coordinates are represented by (i, j) and (is, js) in the main
and the local grids, respectively, and their relations are given
by is = 2(i− i1) + 1,js = 2(j − j1) + 1 as shown in Fig. 2.

B. The temporal interpolation technique

The temporal interpolation realizes the different time step
updating in a region from another. Here we call the region
where computation is performed in the large time step ∆T , as
“MG”, and the one with the small time step ∆t = 1

2∆T , as
“LG”.

At the interface between MG and LG, the MG-LG bound-
ary, the same time step cannot be used for the advection. In
this study, the update procedure is performed as follows. The
first of all, the variables are updated from n to the intermediate
situation ∗, then they are updated to n+ 1

2 . Similarly, they are
done from n + 1

2 to ∗∗, and then to n + 1. Suppose the LG
is spaned over i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2. The update

Fig. 2. The main and the local grids and their coodinate indeces
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equations are given as follows.

f+,∗
x (i1, j) = A+,t

x1 f
+,n
x (i1, j) +A+,t

x2 f
+,n
x (i1 − 1, j)

+A+,t
x3 g

+,n
x (i1, j) +A+,t

x4 g
+,n
x (i1 − 1, j) (25)

g+,∗
x (i1, j) = B+,t

x1 g
+,n
x (i1, j) +B+,t

x2 g
+,n
x (i1 − 1, j)

+B+,t
x3 f

+,n
x (i1, j) +B+,t

x4 f
+,n
x (i1 − 1, j) (26)

η+,∗
x (i1, j) =

C+,t
x1 η

+,n
x (i1, j) + C+,t

x2 η
+,n
x (i1 − 1, j) (27)

f+,∗∗
x (i1, j) = A+,T

x1 f+,n
x (i1, j) +A+,T

x2 f+,n
x (i1 − 1, j)

+A+,T
x3 g+,n

x (i1, j) +A+,T
x4 g+,n

x (i1 − 1, j) (28)
g+,∗∗
x (i1, j) = B+,T

x1 g+,n
x (i1, j) +B+,T

x2 g+,n
x (i1 − 1, j)

+B+,T
x3 f+,n

x (i1, j) +B+,T
x4 f+,n

x (i1 − 1, j) (29)
η+,∗∗
x (i1, j) =

C+,T
x1 η+,n

x (i1, j) + C+,T
x2 η+,n

x (i1 − 1, j) (30)

f−,∗x (i2, j) = A−,t
x1 f

−,n
x (i2, j) +A−,t

x2 f
−,n
x (i2 + 1, j)

+A−,t
x3 g

−,n
x (i2, j) +A−,t

x4 g
−,n
x (i2 + 1, j) (31)

g−,∗x (i2, j) = B−,t
x1 g

−,n
x (i2, j) +B−,t

x2 g
−,n
x (i2 + 1, j)

+B−,t
x3 f

−,n
x (i2, j) +B−,t

x4 f
−,n
x (i2 + 1, j) (32)

η−,∗x (i2, j) =

C−,t
x1 η

−,n
x (i2, j) + C−,t

x2 η
−,n
x (i2 + 1, j) (33)

f−,∗∗x (i2, j) = A−,T
x1 f−,nx (i2, j) +A−,T

x2 f−,nx (i2 + 1, j)

+A−,T
x3 g−,nx (i2, j) +A−,T

x4 g−,nx (i2 + 1, j) (34)
g−,∗∗x (i2, j) = B−,T

x1 g−,nx (i2, j) +B−,T
x2 g−,nx (i2 + 1, j)

+B−,T
x3 f−,nx (i2, j) +B−,T

x4 f−,nx (i2 + 1, j) (35)
η−,∗∗x (i2, j) =

C−,T
x1 η−,nx (i2, j) + C−,T

x2 η−,nx (i2 + 1, j) (36)

IV. NUMERICAL RESULTS

In order to verify the validity of the spatial and the temporal
interpolations, we compare the numerical results with and
without the interpolations.

A. Numerical results of the spatial interpolation

Fig. 3 shows the computational region Rx = Ry = 1 m of
the free space, with the subgrid region 0.4 ≤ x ≤ 0.6, 0.5 ≤
y ≤ 0.7. The cell size of the main grids is ∆X = ∆Y =
1 × 10−2 m, and the one of the local grids is ∆x = ∆x =
5× 10−3 m.

The time step ∆t [s] is chosen as ∆t = 0.5

c0
√

∆x−2+∆y−2
.

The line current at x = 0.5, y = 0.2 m excites the fields with
the waveform:

Jz =

{
1

∆x∆y sin3(ωt), (0 ≤ t < 2π
ω )

0, (t < 0, t > 2π
ω )

, (37)

where ω = 2πfc rad/s, and fc = 5× 108 Hz.

The observation points A and B are set at (x, y) =
(0.5, 0.4), (0.5, 0.8), and the results are compared with the
ones computated by the uniform cell size ∆x = ∆y =
5× 10−3 m.

Fig. 4 shows the observed waveform of ez at the points A
and B, and their frequency characteristics are shown in Fig. 5.

As we can see from Fig. 4, the results with and without
the subgrids agree well with each other, therefore we can
say no spurious reflection caused by the MG-LG boundary.
Moreover, the late time instability does not occur in the
numerical experiments.

In Fig. 5, the results agree with each other in the lower
frequency band, but some discrepancies are found in the higher
frequency band. It is expected that the discrepancies are caused
by the insufficient sampling in the main grids.

Fig. 3. The configuration used in the numerical verification

0 1 2 3 4 5 6 7

x 10

-9

-600

-400

-200

0

200

400

600

time[s]

e

l

e

c

t

r

i

c

 

f

i

e

l

d

 

E

z

[

V

/

m

]

 

 

uniform grid 

∆

 x (A)

subgrid (A)

uniform grid 

∆

 x (B)

subgrid (B)

Fig. 4. The observed waveform at A and B
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Fig. 5. The amplitude of the frequency characteristics at the observation
point A
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B. Numerical results of the temporal interpolation

In order to examine the validity of the proposed temporal
interpolation, we perform the numerical experiment in the
computation region with Rx = Ry = 1 m as shown in Fig. 3.
The cell size is ∆X = ∆Y = 1× 10−2 m. The LG region is
set in 0.5 ≤ x ≤ 0.7, 0 ≤ y ≤ Ry .

The time step in the MG, ∆T , is taken as ∆T =
0.5

c0
√

∆x−2+∆y−2
and in the LG, ∆t =

∆T

2
. The same line

current as the previous section is used to excite fields. We
observe the fields at (x, y) = (0.4, 0.5), and (0.8, 0.5), and
compare with the results using only ∆T in the entire region.

The waveforms observed at the observation points are
plotted in Fig. 7, and the amplitude of the spectra are shown
in Fig. 8.

In Fig. 7, the results with and without the temporal
interpolation agree well with each other, and no spurious
fields caused by the interpolation are observed. In Fig. 8, the

Fig. 6. Configuration for numerical examination
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Fig. 7. The waveforms obtained at the observation points
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Fig. 8. The spectrum at the point A

results coincides with each other, and the relative error at the
frequency fc = 5× 108 Hz is about 0.01 %-0.3 %. Therefore
the spatial and the temporal interpolations proposed in this
study operate with high precision.

V. CONCLUSION

In this study, we develop the subgridding technique for
the CIP method in order to analyze fine structures with low
computational costs. The subgridding technique consists of
the spatial and the temporal interpolations, and the both are
developed separately. The numerical results have shown that
the proposed techniques operate well with high precision over
wide frequency range.

The future work is to use both the interpolation simultane-
ously to apply the subgridding approach to practical problems,
such as scattering from objects with smooth surface.

APPENDIX

The coefficients for the update equations are given as
follows.

A±,β
α1 = 1− 3ξ2 + 2ξ3 (A.1)

A±,β
α2 = 3ξ2 − 2ξ3 (A.2)

A±,β
α3 = ±∆α(−ξ + 2ξ2 − ξ3) (A.3)

A±,β
α4 = ±∆α(ξ2 − ξ3) (A.4)

B±,β
α1 = 1− 4ξ + 3ξ2 (A.5)

B±,β
α2 = −2ξ + 3ξ2 (A.6)

B±,β
α3 = ± 6

∆α
(ξ − ξ2) (A.7)

B±,β
α4 = −B±

α3 (A.8)

C±,β
α1 = 1− ξ (A.9)

C±,β
α2 = ξ (A.10)

where

ξ =
c∆β

∆α
(A.11)

α = x, y (A.12)
β = t, T (A.13)
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