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1. Introduction 

A single-port compact array antenna, i.e., electronically steerable parasitic array radiator (Espar) an-
tenna [1], have shown the potential for application to wireless communications systems, and especially 
to mobile terminals. The (M+1)-element Espar antenna has only an active radiator connected to the 
receiver. The remaining M elements are parasitic. The antenna pattern is formed according to the val-
ues of the loaded reactance on these parasitic radiators.  

Because of the configuration of the Espar antenna, we face the following three difficulties [1][2] in 
the development of optimum algorithms: a) The signals on all elements cannot be observed. Only the 
single-port output can be observed. b) The RF currents on the elements are not independent but mutu-
ally coupled with each other. c) The single-port output is a highly nonlinear function of the variable 
reactances that includes the admittance matrix inverse. In addition, unlike digital beamforming anten-
nas, conventional criteria such as MMSE (Minimum Mean Square Error) are useless for the optimiza-
tion of the Espar antenna, since the amplitude of the antenna output is difficult to be adjusted [2]. 

In this paper, we give an overview of criteria and optimization algorithms for beamforming and de-
sign of the Espar antenna. The criteria are maximum power, maximum cross-correlation coefficient 
and maximum m-th order moment [1][2][3]. We describe the optimization algorithms including ran-
dom search algorithm [4], gradient-based algorithm [2][5], and Hamilton algorithm [6][7][8]. For the 
optimization of the Espar antenna, the gradient-based algorithm converge fast but sometimes unwill-
ingly fall into a local minimum depending upon the initial value for one of their parameters. On the 
other hand, the random search algorithm tolerate local-minimum problems but rather slow to reach the 
final goal. Hamiltonian algorithm intends to meet the two conflicting requirements, i.e., to be determi-
nistic and to be free from local problems. The algorithm is especially expected to work effectively in 
case that the number of parameters are very large. 
2. Signal Model of Compact Array Antenna 

In an (M+1)-element Espar antenna, the 0th element is an active radiator located at the center of a 
circular ground plane. It is a λ/4-length monopole (where λ is the wavelength) and is excited from the 
bottom in a coaxial fashion. The remaining elements of λ/4-length monopoles are parasitic radiators 
surrounding the active radiator symmetrically, with the circle’s radius. Each of these elements is ter-
minated by a variable reactance xm, (m=1,2,…,M). The reactance vector is denoted by x=[x1, x2,…, 
xM]. In [1][2], the RF current vector in elements is given by , where  is a con-
stant, and . The diagonal matrix  is called the reactance 
matrix, and  is referred as to the impedance matrix, with expressing the mutual 

impedance between the elements and  ( ). 
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Suppose there are a total number of signals with DOAsQ )(tuq qφ , ( ). The output of 

the Espar antenna is , where is the steer-

ing vector, and n(t) is noise. Note that  is a function of the reactance vector x.  
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3. Criteria for Optimization 
 This section gives three criteria for optimum control and design of the Espar antenna. 
3.1 Maximum Power 
 The signal power of the antenna output is defined by . When only a single sig-
nal from the direction
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φ is impinged,  is seen as the power )(P xJ ),(P φxJ  to be received in the di-



rectionφ of arrival of the signal. The criterion of the maximum power is used for sector beamforming 
[3] and antenna design to get a maximum gain [8]. 
3.2 Maximum Cross-Correlation Coefficient 

Instead of MMSE, we propose a Maximum Cross-Correlation Coefficient (MCCC) as a trained cri-
terion for antenna beamforming [1]. It is well known that the cross-correlation coefficient represents 
the similarity of two signals, while the error represents the difference. For a given radio environment, 
the normalized cross correlation coefficient )(xρJ , between the output signal y(t) and the reference 
signal r(t), varies over the range [0, 1], as the reactance vector is controlled. The interference signals in 
the output signal y(t) are suppressed when y(t) becomes similar to the reference signal r(t), regardless 
of their difference in amplitude. Employing the cross-correlation function avoids the need for an extra 
amplitude control (e.g., automatic gain control) on y(t). For the Espar antenna, as shown below, this 
provides an effective solution to the difficulty of adjusting the amplitude of the output signal so that it 
equals the amplitude of the reference signal. 

3.3 Maximum m-th Order Moment 
The blind criteria used in digital beamforming antennas (such as the well-known CMA criterion) are 

again unsuitable for adaptive control of analog smart antennas. We instead propose the Maximum m-
th order Moment Criterion (MMMC) [1]. This is defined similarly to the MCCC, but the objective 
function is , where m is the modulation index of the desired signal. 
This operation is effective for any signal modulated in m-ary phase shift keying. Say m = 2 for BPSK 
and m = 4 for QPSK. It works without a priori training code. The only information the receiver has to 
know beforehand is the index m. The statistical behavior of the objective function is somewhat more 
complex than that of MCCC but can be derived as a monotonous function of SINR.  
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4 Optimization Algorithms 
 This section describes the three optimum algorithms for optimizing the Espar antenna. In general, the 
three criteria we stated in Section 3 can be used to the three optimum algorithms. 

4.1 Random Search Algorithm 
 A simple approach to obtain an optimum reactance vector is by random search algorithm [4], also 
called Monte Carlo method. The algorithm is algebraically describe as 
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where J(x(n)) is an estimate of an objective function based on samples of y with x=x(n). For example, 
the objective function can be the cross-correlation coefficient ))(( nJ xρ . 

4.2 Gradient-Based Algorithm 
The random search algorithm above has the drawback that nothing is learned when a trial at step n is 

completed. The next trial at step n+1 is independent from the previous step. It does not take any local 
continuity properties of the objective function surface. The gradient-based adaptive algorithm gives a 
good solution of this problem. The goal of the gradient-based adaptive algorithm of the Espar antenna 
is to find a reactance vector x such that an objective function, one of the three functions in Section 3 
(e.g., cross-correlation coefficient), is as large as possible. In the steepest gradient algorithm [2], the 
update value of the reactance vector at time n+1 is computed by using the simple recursive relation 

))(()()1( nJnn xxx ∇+=+ µ                  
where µ is a positive real-value scalar constant that controls the convergence speed, and is 
the gradient vector of function J(x(n)). 
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There may be some difficulty when we compute the gradient vector. As we have stated 
above, this arises from the facts that a) it may not be easy to analytically represent the gradi-
ent vector as a function of x because of the presence of an intractable matrix inverse in the 
representation of y(t), and b) the signal vector impinging on each element of the antenna can-
not be observed. An estimate of the gradient vector may be derived by the use of a finite-
difference approximation of derivatives [2]. In this approximation, only one component of the 
vector  is calculated at a time n from the output of the antenna. All of the components ))(( nJ x∇



of reactance vector x are sequentially perturbed in order to get one gradient vector for each iteration. 
This sequential perturbation of the reactance requires K+1 times transmission of the signal (with 
length L bit) for one iteration. Thus, a total of L(K+1)N symbols are required for N iterations. In addi-
tion, details for a simultaneous perturbation to calculate the gradient vector can be found in [5]. 

4.3  Hamiltonian Algorithm for Multiple-Parameter Optimization 
There have been developed several sorts of algorithms to find optimum set of multiple parameters 

for a given criterion or objective function of the parameters. They are generally classified into two 
categories: 1) deterministic; and 2) randomized. Deterministic ones, such as the gradient-based algo-
rithm, converge fast but sometimes unwillingly fall into a local minimum depending upon the initial 
value for one of their parameters. On the other hand, randomized ones, such as the random search al-
gorithm tolerate local-minimum problems but rather slow to reach the final goal. Ones based on the 
genetic concept seem to be deterministic at first glance, but they actually involve mutation in a random 
fashion to escape from local traps.  

Hamiltonian algorithm [6][7] intends to meet the two conflicting requirements, i.e., to be determi-
nistic and to be free from local problems. The algorithm is especially expected to work effectively in 
case that the number of parameters are very large. 

Hamiltonian algorithm was applied to antenna parameter optimization first for Espar antenna [8]. 
Hamilton algorithm originally stems from a heuristic idea with autonomous motion of lumped mass in 
a friction-free potential space. The point of mass moves according to the law of energy conservation, 
i.e., kinetic energy plus potential energy keeps constant during the motion. The unknown reactance 
vector x and the scalar objective function J , we stated in Sec. 3, are compared to the location and the 
potential energy of the moving mass, respectively. Table 1 shows the analogy from dynamics, mathe-
matics, to antenna engineering. One can find that the key feature of Hamiltonian algorithm lies in the 
momentum, which does not appear either in mathematics or in antenna engineering.  

To convert antenna issues into dynamics, the space for M-dimensional reactance vector x is ex-
panded to a 2M-dimensional space 

[ x, p ] = [ x1, x2, …, xM, p1, p2, …, pM ] 
where the appended M components imply the momentum vector of the mass. Hamiltonian function 
defined as the sum of potential energy and kinetic energy 

H(x, p) = ψ(x) + K(p) 
plays the key role in dynamics. Function H(x, p) is kept at constant value, say E, provided that it does 
not explicitly contain time, where E is called total energy. The potential energy can be the negative 
one of the functions we stated in Section 3. For example, ),()( P φψ xx J−= , where ),(P φxJ  is the 
power of the antenna to be radiated in the direction φ. Kinetic energy K(p) in this particular system is 
considered as 
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where the mass can be assumed to be unity for simplicity. This is valid since the movement is invari-
ant against the mass. Thanks to the inertia of the mass i.e. momentum, it is not trapped by local mini-
mums but effectively passes over them.  Since the kinetic term itself is not concerned from the antenna 
engineering view point, we can introduce arbitrary positive constant index γ to modify the above for-
mula into 
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This modification effectively improves the efficiency of parameter optimization process. If and only if  
 

Table 1   Analogy from mass dynamics to antenna engineering 
               

dynamics           mathematics             ESPAR antenna 
dimension        number of unknowns    number of varactors 
location of mass    unknown vector         reactance vector 
potential energy   objective function        directional gain 
momentum         not concerned           not concerned 



we choose 0 < γ < 1, probability density is higher for the mass to stay at locations with lower potential 
while moving in the 2M-dimensional space. This corresponds to higher probability for the antenna to 
reach a higher directional gain in the algorithm. Such a phenomenon indeed looks diametrically oppo-
site from experiences in the actual space, but it is wonderfully true in multiple-dimensional spaces. 
See Refs. [6][7][8] for mathematical proof.  

Function H(x, p) leads us to a system of canonical equations for xi and pi, formulated as 
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where partial derivative in terms of p or x indicates the gradient in each direction. We can trace the 
mass trajectory by alternately iterating the coupled equations. Simulations in [8] show that the moving 
mass hits the vicinity of optimum spot, i.e., the region of high directional gain of antenna, with high 
probability. Figure 1 shows histograms of the directional gain obtained by the Hamiltonian algorithm 
(HA) during 10,000 time steps. For the sake of comparison, also depicted on the same chart are gain 
histograms obtained from random search, i.e., Monte Carlo (MC), simulation in 10,000 random trials 
for the same condition as HA. It is found that HA exhibits significantly higher probability to hit high 
gains than MC does. This advantage is supposed to be even more enhanced in case the number of un-
known parameters should increase [8]. 

5. Conclusion 
 We have given an overview of the optimum criteria and algorithms for Espar antenna. 

Among the three optimum algorithms, Hamiltonian algorithm intends to be deterministic and 
to be free from local problems. The algorithm is especially expected to work effectively in 
case that the number of parameters are very large. 
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Fig. 1 Directional gain histograms counted by Hamiltonian algorithm (HA) and Montecarlo method (MC) [8]. 


