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Introduction 
MIMO system, which can satisfy the demand of high capacity in wireless 

communications,  has been paid much attention through years. Due to the  fact 
that capacity of MIMO depends on the correlation between the waves impinging 
on two antenna elements, many studies on properties of the correlation have been 
widely carried out [1-4]. It has been shown that correlation depends on 
polarization, pattern of elements, spacing, and power azimuth spectrum (PAS).  
Close form of correlation and dependence of correlation on PAS and directive 
antenna are presented in [1], [2] and [3]. However, by assuming that patterns of 
all elements are identical or omidirectional, impact of patterns and polarization 
between elements  on correlation is not considered. In this paper, we  derive and 
analyze the spatial correlation with respect to polarization and pattern, based on  a 
physically intuitional stochastic channel model for multiple-input multiple-output 
(MIMO) using polarized array. Simulations are performed using two dipoles with 
various configurations to investigate effects of polarization, patterns between 
elements. Results show that the correlation is very sensitive to orthogonality of 
pattern and polarization.  

 
Polarized channel model and spatial correlation 

Consider a MIMO system with NT transmit and NR receive antennas  in 
Fig. 1,  the input-output relationship can be expressed as 

                       y(t) = H(t)x(t) + n(t)                                                                   (1)      
where y(t), x(t), and n(t) denote transmitted signal vector, receive red signal 
vector and noise vector, respectively. H(t) is NR x NT complex channel coefficient 
matrix. Let us assume flat fading channel and  NLOS propagation environment,  
hqs (t),  the (q, s) component(q=1..NR, s=1…NT)  of H(t), can be expressed as  
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where L is the number of sub-rays; Al is the amplitude of the lth sub-ray; lβ  and 

lϕ are the angle of departure and arrival of the lth sub-ray, respectively; ( )
, ( )v

TX s lG β  

and ( )
, ( )h

TX s lG β are the pattern of sth element in TX array for V and H polarization, 
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respectively; ( )
, ( )v

RX q lG ϕ and ( )
, ( )h

TX q lG ϕ are the pattern of sth element in RX array for 
V and H polarization, respectively; ds is the distance between the sth element and 
the reference in TX array; dq is the distance between the qth element and the 
reference in RX array; , , and  are the phase offset of lth 
sub-ray for each of the four polarization channels VV, VH, HV and HH; is  the 
inverse XPD value for VV/VH and HH/HV;

( , )v v
lφ ( , )v h

lφ ( , )h v
lφ ( , )h h

lφ

lκ

TXθ  is the angle between the TX 
array broadside and the LOS direction; RXθ is the angle between the RX array 
broadside and the LOS direction; vθ is the angle between the velocity vector and 
the  the RX array broadside and; v is the RX velocity vector. 

The spatial correlation at RX between two paths impinging on two different RX 
antennas (q and r), but emanating from the same TX antenna (s), is expressed as 

[2]: 
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where E{.} is the expectation operator.                               
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where d = dq- dr is the spacing between the element q and r;  lκ =1/XPD, XPD (in 
dB) N(∼ ,μ σ ), depending on propagation environment,  μ   varies from 0 to 18 
dB, σ is in the order of 3-8 dB [4]; , , and ( , )v vφ ( , )v hφ ( , )h vφ ( , )h hφ [ ,U ]π π−∼ . 

2{ ,l l lE A }β ϕ is the expected relative power conditioned on the azimuth angles of 

lβ and lϕ , and  when L it can be expressed as  → ∞
2{ , }l l lE A ϕ ( ) ( )TX RX

A AP d P d= β β ϕ ϕ                                                                      (5) β

( )TX
AP β  and ( )RX

AP ϕ  are power azimuth spectrum (PAS) at TX and RX 
respectively, they are assumed to be Laplacian distribution: 
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After some mathematical transformations (not shown here due to the limitation of 
this paper), (4) becomes  the following integral form: 
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The denominator of (3) is solved in the same way, due to the limitation of this 
paper, the result is not shown here. 
       

Simulation results and Discussion 
The spatial correlation is simulated to study the effects of propagation 

environment, polarization and pattern of  arbitrary antennas. For the sake of 
simplicity, the two elements (the qth and rth in the previous Section ) of RX array 
are assumed to be half-wavelength dipole antennas which are depicted in Fig. 2. 
To study the impact of   polarization on the spatial correlation, the qth element is 
fixed in the vertical plane and the rth element is rotated in the xz plane, with the 
slant angle of α , as shown in Fig. 2a. Fig. 3a shows the results of correlation 
different cases of the slant angle α . As can be seen, the higher slant angle, the 
lower the correlation, at the same spacing. Or the better polarization  
orthogonality, the lower the correlation.  At the slant angle of 900, or completely 
polarized orthogonality, the correlation drops quickly, from 0.66 to 0.04,  at the 
spacing less than 0.75 times of wavelength. To investigate effects of patterns on 
the spatial correlation, the two dipoles are horizontally placed in the xy plane as 
shown in Fig. 2b. The qth element is fixed while the rth element is rotated in the 
xy plane, with the rotation angle of φ . In Fig. 3b, we compare the spatial 
correlation for different  rotation angles. The result shows that the correlation is 
very sensitive to rotation angle φ  at small spacing between the two elements. The 
correlation is the lowest when φ = 900, or when the two patterns are orthogonal, 
and it sharply increases when the orthogonality is not maintained. So it is possible 
to use pattern diversity as a means to create uncorrelated channels across 
elements.   

Conclusions 
This paper has derived and analyzed the spatial correlation  based on 

stochastic channel model. Simulations are made using dipole antennas to study 
effects of polarization and patterns on spatial correlation. Results show that the 
correlation can be reduced by using polarization or pattern diversity and would be 
minimized if patterns or polarization of elements are orthogonal.   
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Fig 1. MIMO configuration under stochastic channel model 
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Figure 2.  Configuration of half-wavelength dipole antennas. (a) Two dipoles in 

the xz plane. (b) Two dipoles in the xy plane. 
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Figure 3.  Spatial correlation vs. spacing for different slant and rotation angles 
(a)  Different slant angles. (b) Different rotation angles. 
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