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1. Introduction 
Equivalent Edge Current (EEC)[1] realizes the reduction of PO surface radiation integral to line 
integral. The authors have been proposing the Modified Edge Representation (MER)[2] for deriving 
EECs. MER is unique in that it defines EECs not only along the periphery but also everywhere on 
the scatterer surface. At the Stationary Phase Point (SPP), the MER-EEC has the singularity. 
Authors have found numerically that the MER line integral around the SPP (MER-SPP) converges 
to Scattering Geometrical Optics (SGO) for variety of curved surfaces[3]. For a planer surface with 
one Stationary Phase Point (SPP), it has been proved mathematically[3]. For curved surfaces, SGO 
can be represented by MER-SPP only if the reflection wave front is spherical[4]. In this article, the 
authors discuss this “spherical reflection condition” in detail. Firstly, it is confirmed numerically 
that there is no frequency dependence on SGO extraction errors by MER-SPP[5]. Then the 
mathematical proof for SGO extraction from a curved surface by MER-SPP is studied. For 
simplicity, a sphere is considered as the scatterer in this article.  
 
2. Modified Edge Representation Line Integral 
The modified edge vector τ̂  (Fig.1) is defined at every point on the boundary of the scatterer. It 
satisfies the diffraction law shown in Eq.1. The vector t̂  is the tangential vector to the real edge of 
the boundary of the scatterer. The vector τ̂  generally differs from the real edge t̂ . Only where the 
diffraction phenomenon occurs the vector τ̂  and the vector t̂  have the same direction. The vector 
n̂  is the unit normal vector on the surface of the scatterer and the vector ˆ ˆi or , r  is given by the 
direction of integration point to source and observer.  
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     MER line currents are defined in Eq.2. MER scattering fields can be calculated by Eq.3, where 
andA  B are defined in Eq.4. The currents in the MER line integral are approximated 

ˆ2 , 0= × iJ n H M =  as the one of Physical Optics (PO), where iH  is the unperturbed incident 
magnetic field. PO current J  includes only the radiation term and the relation between J, M and 

0 0J , M  is as follows: ,k k= =0 0J J M M .  
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Fig.1 Modified Edge 
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For the case where there is no SPP on the scatterer surface, it was mathematically proved that PO 
radiation integral is reduced to the MER line integral along the boundary of the scatterer using 
Stoke’s theorem as well as the high frequency approximation.  
 = ⋅ = ⋅ =∫∫ ∫

JJG JGPERS PER PER
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For the case there exists SPP on the planar surface, PO radiation integral is reduced to the sum of 
two MER line integrals shown in Eq6. Where S ′  is an infinitesimal small region which contains 
SPP and 0S  is its complement. Γ  is the integration path around the periphery of the scatterer and 

′Γ  is the one around the SPP. For a curved surface, not only PO reduction to MER line integral 
collapses but also SPP

MERE  fails to represent SGO except the condition of spherical reflected wave 
front. In this article, only the latter is considered.  
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3. Equivalence of MER-SPP and SGO 
In this chapter, MER-SPP convergences to SGO for various surfaces are numerically investigated. 
Fig.4 shows the geometry of ellipsoid. As an example, parameters of ellipsoid are taken three cases 
as follows. R1=25λ, R2=15λ, 25λ, 100λ, R3=100λ. X polarized dipole source is located at 
R=5λ from SPP and observer is symmetry to Z axis ( i rθ θ= ) with its distance far enough from the 
scattering surface. Radius of integration path around SPP is ρ=0.00001λ, which is infinitesimal 
enough to verify convergences. Results are shown in Fig4. Left side of vertical axis shows 
amplitudes of reflected rays normalized by the direct wave from dipole source including just only 
the radiation term. Right side of it shows the ratio of two radii of curvature of the reflected wave 
front. For the planar surface, SGO can be represented by MER-SPP at all observer angles. For the 
curved surfaces with its radius 10λ , SGO can be represented by MER-SPP only under the 
condition of 1 2 1r rρ ρ = , which intends the spherical wave front. SGO extraction error by MER-SPP 
is directly related to the ratio of two radii of curvature of the reflected wave front.  
 
4. Frequency Dependence of SGO Extraction Error by MER-SPP 
In this Chapter, frequency dependence of SGO extraction error by MER-SPP is investigated. Two 
extreme cases are considered, which are 0 0 0, 0.001 ,1000f f f f= . Parameters of ellipsoid at 
frequency f0 are  R1=25λ, R2=100λ and R3=100λ, R=5λ. Radius of integration path around 
SPP is ρ=0.00001λ for all frequencies, which is small  enough for the convergences. Results are 
shown in Fig6. MER-SPP, SGO and the ratio of two radii of curvature of the reflected wave front is 
also plotted. Three results for the different frequency are indistinguishable and irrelevant to 

 
Fig.3 Astigmatic Ray Tubes  

(Reflection From a Curved Surface) 

 
Fig.2 Infinitesimal contour Γ’ around SPP 
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frequencies. SGO extraction condition by MER-SPP seems to be only the geometrical one that  
reflection wave front is spherical and therefore frequency independent. This suggests that the 
exponential term of MER-SPP (Eq.3) can be taken out from integrand and mathematical treatment 
will become simple for identifying the equivalence analytically.  

 
Fig. 4 Geometry of Ellipsoid             Fig. 5 MER-SPP Convergence to SGO for Various Surfaces 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Frequency Independence of SGO Extraction Error by MER-SPP                  
 
5. Mathematical Discussion of SGO by MER-SPP 
In this chapter, the extraction of SGO by MER-SPP for the reflection with the spherical wave front 
is mathematically discussed based on the results in Chapter4.  
First of all, when the wave front is spherical, SGO reflected field can be written as:  
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     where 1 2,r rρ ρ =  principal radii of curvature of the reflected wave front at the point of reflection 
               R =  reflection coefficient 
Secondly, MER-SPP is expressed as the line integral around SPP taking the limit of ρ→0 . 
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According to Chapter4, exponential term can be taken out from integrand. At this stage, the 
reflected wavefront is general and can be astigmatic. The vector on the integration path around SPP 
is expressed by the one at the SPP. Eq.9 is derived using  
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 and it works out regardless of the 

scatterer.  
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where ˆ'n  is the unit normal vector on the integration path around SPP and 
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For simplicity, let us consider the case of  i or r r= =  and the spherical surface with the radius a. The 
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The condition of spherical wave front for its surface sphere is Arccos Arccos 12 1a aθ = = =0deg for  
1 2a ,a = a. Now, SPP

MERE is written as Eq11 and it is proved that SGO can be represented by MER-SPP.  
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6. Conclusion 
SGO from a curved surface by MER-SPP is mathematically discussed under the condition of 
spherical wave reflection. For simplicity, a sphere is considered as the scatterer and it is proved that 
SGO can be represented by MER-SPP. Similar mathematical discussion for another scatterer will be 
considered. Further investigation on SGO extraction errors by MER-SPP in general case is still left 
for further study. 
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