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1. Introduction

Electromagnetic scattering from periodic structures with finite extent has been extensively stud-
ied as wavelength and polarization selective components in microwave, millimeter-wave, and optical
wave regions. As well know, when a plane wave is incident on a perfectly periodic structure, the Flo-
quet theorem claims that the scattered fields are pseudo-periodic (namely, each field component is a
product of a periodic function and an exponential phase factor) and the analysis region can be reduced
to one periodicity cell. However, in case of periodic structure with finite extent, the Floquet theorem
is no longer applicable and the computation has been mainly performed with the finite difference time-
domain method, the finite element method, the time-domain beam propagation method, etc., in which
the structural periodicity is not utilized.

This paper deals with the two-dimensional electromagnetic scattering from an apodized surface-
relief grating with finite extent. The basic idea of the formulation is the same with Ref. [1]. Namely,
the present formulation is based on the differential method of Chandezon et al. [2] (referred to as the
C-method) with the help of the pseudo-periodic Fourier transform (PPFT) [3]. Let f(x) be a function
of x and d be a positive real constant. Then the PPFT and the inverse transform are defined by

f(x; ξ) =
∞∑

m=−∞
f(x − md) ei m d ξ, f(x) =

d

2π

∫ π/d

−π/d
f(x; ξ) dξ. (1)

The transformed function f(x; ξ) has a pseudo-periodic property with the pseudo-period d in terms of
x: f(x − d; ξ) = f(x; ξ) e−i d ξ. Also, f(x; ξ) is a periodic function of the transform parameter ξ
with period 2π/d. Maxwell’s equations and the constitutive relations are transformed and the benefit
of the pseudo-periodicity makes us possible to express the transformed fields in the generalized Fourier
series [4]. Also, we introduce a discretization of the transform parameter, and then the problem can be
solved by the standard matrix operation.

2. Settings of the Problem y

x

y = g(x)

d

Figure 1: Apodized surface-relief grating.

Figure 1 shows an example of apodized
surface-relief gratings. We consider time-
harmonic fields assuming a time-dependence in
e−i ω t. The grating structure is uniform in the z-
direction, and the y-axis is perpendicular to the
grating-plane. The grating surface is given by
a known function g(x) = ga(x) gp(x), where
gp(x) is a periodic function with a period d and
ga(x) is an apodization factor. For simplification,



g(x) is supposed to be a continuous function with continuous derivative. The region y > g(x) is filled
with a homogeneous and isotropic material described by a permittivity εc and a permeability µc, and
the incident field illuminates the grating surface from this region. The substrate region y < g(x) is
also homogeneous and isotropic, and the material is described by a permittivity εs and a permeability
µs. The incident field, which does not need to be plane wave, is supposed to be dependent on x and y
only. Consequently, the electromagnetic fields are uniform in the z-direction and two-dimensional scat-
tering problem is considered. Two fundamental polarizations are expressed by TE and TM, in which the
electric and the magnetic fields are respectively parallel to the z-axis. The Cartesian components of the
fields is denoted by (ϕx, ϕy, ψz) = (Hx,Hy, Ez) for TE polarization and (ϕx, ϕy, ψz) = (Ex, Ey,Hz)
for TM polarization. Also, the regions above and below the grating surface are both homogeneous, and
we consider the electromagnetic fields in each region separately. We use a notation r = c, s to deal with
the both regions simultaneously, and the regions y > g(x) and y < g(x) are denoted by r = c and
r = s, respectively.

3. Formulation

The formulation of the problem follows the same process with that in Ref. [1]. We introduce
a curvilinear coordinate system O-uvz, which is related to the original coordinate system O-xyz by
continuously differentiable transformation equations: u = x and v = y − g(x). Introducing PPFT
with respect to u, the transformed fields have pseudo-periodic property in terms of u, and they can be
approximately expanded in the truncated generalized Fourier series. For example, the z-component of
the field can be written as

ψz(u; ξ, v) ≈
N∑

n=−N

ψz,n(ξ, v) ei αn(ξ) u, αn(ξ) = ξ + nkd (2)

where N denotes the truncation order and ψz,n(ξ, v) are the nth-order generalized Fourier coefficients.
We take L sample points {ξl}L

l=1 to discretize the transfer parameter ξ, and the convolutions yielded
from the products of functions of u are approximated by an appropriate numerical integration scheme.
Then we may obtain a coupled differential-equation set as(

ψ̃z(v)
−i d

dv ψ̃z(v)

)
= −i M r

d

dv

(
ψ̃z(v)

−i d
dv ψ̃z(v)

)
(3)

with

M r =

(
−

(
kr

2 I − X̃2
)−1 (

X̃ [[[ġ]]] + [[[ġ]]] X̃
) (

kr
2 I − X̃2

)−1 (
[[[ġ]]]2 + I

)
I 0

)
(4)

[[[ġ]]]=


w1
kd

[[ġ]](ξ1 − ξ1) · · · wL
kd

[[ġ]](ξ1 − ξL)
...

. . .
...

w1
kd

[[ġ]](ξL − ξ1) · · · wL
kd

[[ġ]](ξL − ξL)

 ,
(
[[ġ]](ξ)

)
n,m

=
1
d

∫ ∞

−∞
ġ(u) e−i αn−m(ξ) u du (5)

where ψ̃z(v) denotes a column matrix generated by the generalized Fourier coefficients {ψz,n(ξl, v)},
kr = ω

√
εr µr denotes a wavenumber in the region r, X̃ denotes a diagonal matrix whose diagonal

elements are {αn(ξl)}, ġ(u) denotes the derivative of g(u), and {wl}L
l=1 denotes the weight determined

by the numerical integration scheme.
Since the coefficient matrix M r is constant, the general solution to the coupled equation set

(3) is obtained by solving an eigenvalue-eigenvector problem. Let ηr,n be the reciprocal of the nth-
eivenvalue of M r and pr,n be the corresponding eigenvector. The order of M r is 2L(2N + 1), and

the 2L(2N + 1) eigenvalues are numbered in such a way that {ηr,n}L(2N+1)
n=1 contains real values with



negative value and complex values with positive imaginary parts and that {ηr,n}2L(2N+1)
n=L(2N+1)+1 contains

values with the opposite signs. Then, the general solution to Eq. (3) is written in the following form:

ψ̃z(v) = P r,11 a(−)
r (v) + P r,12 a(+)

r (v) (6)

where P r,nm (n,m = 1, 2) are L(2N + 1) × L(2N + 1) block matrices contained in the eigenvector
matrix, in which the nth-eigenvector of M r is stored in the nth-column. The v-dependences of the
column matrices a

(±)
r (v) are expressed as

a(±)
r (v) = U r(±

(
v − v′

)
) a(±)

r (v′), (U r(v))n,m = δn,m ei ηr,n v (7)

for a constant v′, and a
(+)
r (v) and a

(−)
r (v) gives therefore the amplitudes of the eigenmodes propagating

in the positive and negative v-direction, respectively.
We denote the covariant component of fields in terms of u by ϕt = ϕx + ġ ϕy, which gives

the tangential component of the field on the grating surface y = g(x). Then the generalized Fourier
coefficients of ϕt(u; ξl, v) are expressed in the following form:

ϕ̃t(v) = Qr,1 a(−)
r (v) + Qr,2 a(+)

r (v) (8)

Qr,m =

− 1
ω µr

[
[[[ġ]]] X̃ P r,1m −

(
[[[ġ]]]2 + I

)
P r,2m

]
for TE-polarization

1
ω εr

[
[[[ġ]]] X̃ P r,1m −

(
[[[ġ]]]2 + I

)
P r,2m

]
for TM-polarization

(9)

for m = 1, 2. The general solutions separately obtained in the regions c and s are matched at the grating
surface v = 0 by equating the ψz and ϕt. Then the amplitudes of the incident and the scattered fields
are related by (

a
(+)
c (+0)

a
(−)
s (−0)

)
=

(
S11

S21

)
a(−)

c (+0) (10)

where the scattering matrices are given as follows:

S11 = −
(
P s,11 Q−1

s,1 Qc,2 − P c,12

)−1 (
P s,11 Q−1

s,1 Qc,1 − P c,11

)
(11)

S21 = Q−1
s,1

(
Qc,1 + Qc,2 S11

)
. (12)

The relation (10) makes possible to calculate the scattered fields for known incident fields.

4. Numerical Results

To validate the present formulation, this section shows some numerical results for a specific
example of apodized surface-relief grating. The grating profile is determined as

gp(x) = h cos
(

2 π

d
x

)
, ga(x) =


1 for |x| ≤ w1

sin2
(

π
2

x−w2
w2−w1

)
for 0 < |x| ≤ w2

0 for |x| > w2

. (13)

Also, the electromagnetic fields are excited by a line source located parallel to the z-axis at (x, y) =
(x0, y0), and the incident field is then given as

ψ(i)
z (x, y) = H

(1)
0 (kc ρ(x − x0, y − y0)), ρ(x, y) =

√
x2 + y2. (14)

The parameters are chosen as follows: λ0 = 0.6328µm, h = 0.2λ0, d = 0.6λ0, w1 = 1.5 d, w2 = 3 d,
εc = ε0, εs = (1.3+i 7.6)2 ε0, µc = µs = µ0, and (x0, y0) = (0, 2 d). An observation point is chosen at
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Figure 2: Convergence of the field intensity at an
observation point (x, y) = (d, d) with respect to the
number of sample points L.
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Figure 3: Field intensity near a apodized sinusoidal
grating with a line source excitation.

(x, y) = (d, d) without deliberation and the in-
tensity of ψz is computed. The obtained results
are plotted as functions of the number of sample
points for the transform parameter in Fig. 2. The
computation is performed with the truncation or-
der N = 3, and the periodic interval of the trans-
form parameter ξ is split into two subintervals at
the Wood-Rayleigh anomalies [3]. The number
of sample points L is divided in the ratio of the
subinterval widths, and apply the Gauss-Legendre
scheme for each subinterval to decide the sample
points {ξl}L

l=1 and the weights {wl}L
l=1. The re-

sults show reliable convergence though TM polar-
ization converges slower. Also, the field intensity
distribution near the grating surface is computed
for N = 3 and L = 100 and shown in Fig. 3.

5. Conclusions

This paper presents a novel approach
to the electromagnetic scattering from apodized
surface-relief gratings. The formulation is based
on C-method with the help of PPFT. The near
field analysis requires a numerical integration
with respect to the transform parameter, and the
sample points are determined by considering the
Wood-Rayleigh anomalies. Numerical experi-
ments of an apodized sinusoidal grating made of
conducting material show reliable results and the
present formulation seems to be no problem.
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