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1. Introduction

Multipath clustering has been started to be considered in Multiple-Input Multiple-Output
(MIMO) propagation channel models [1]. Availing the benefits of MIMO systems also includes
knowing how these multipath clusters behave in order also to come up with better MIMO wire-
less system designs. Assuming the presence multipath clusters in a certain channel scenario, the
knowledge of them includes identifying them in a satisfactorily accurate way. Cluster identifi-
cation was done manually in most of previous studies, e.g. [2], thus affecting their subsequent
channel models. However, as large data sets from channel sounding have made the manual
identification of clusters cumbersome, the use of clustering algorithms has been a resort. Thus,
clusters can be identified objectively and eventually modeled without visual bias. In this paper,
using an optimized automatic clustering approach, results of the determination of the cluster-
ing of multipaths are presented. Our observations show that the distribution of cluster power
proportion should also be taken into account when modeling clusters as unnecessary exclusion
of least clusters may not represent the characteristics of clusters in the channel.

2. Estimated MIMO Propagation Channel Data

Using a maximum likelihood multidimensional parameter estimation algorithm [3], path
parameters such as the time delay, direction of departure and arrival, and complex polari-
metric path weights were extracted. Here we denote our nth path channel data as Xn =
[τn φBS

n θBS
n φMS

n θMS
n ], where τ is the delay of the signal, with azimuth (φ) and co-elevation

(θ) angle of departure from the base station (BS) to the mobile station (MS). The estimation
algorithm is based on the double-directional channel concept, which makes the results indepen-
dent of the antennas used. Pertinent channel sounder and environment details are in Table 1(a)
and Table 1(b), respectively. A continuous twenty snapshot frame was chosen for clustering, in
which the clustering was done per snapshot. These snapshots were taken after midnight while
the channel sounder was being moved at a speed of about 0.14 m/s in a street with no moving
cars. In the post processing, strongest paths that represent the LoS were removed and only
those signals down until −90 dB were included. X is then inputted to the clustering algorithm,
together with the number of clusters, K, which was adjusted from 2 to 14.

3. Clustering Approach

3. 1 K-means Algorithm & Global Optimization Using Simulated Annealing

Without consistent reproducibility, visual cluster identification methods can become un-
wieldy and subjective when applied to large data from channel sounding. So we resorted to
the use of clustering algorithms. We used the K-means algorithm for clustering. Its criterion
is: min

{Ck}K
k=1

[∑K
k=1

∑
X∈Ck

d(X,µk)
]
, where d(·) is the multipath-distance measure, and µk is the
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Table 1: Measurement system and environment details
(a) Medav-RUSK-Fujitsu MIMO channel sounder

Carrier frequency : 4.5 GHz
Bandwidth : 120 MHz
BS antenna : Uniform rectangular array

: V & H pol. 4×2 patches
MS antenna : Stacked uniform circ. array

: V & H pol. 24×2 patches
Tx signal : Wideband multitone
Maximum τ : 3.2 µs

(b) Small urban macrocell scenario

BS height : ∼85 m

MS height : ∼1.80 m

BS-MS distance : ∼320 m

Structure type : residential & industrial

Sounding area : Kawasaki, Kanagawa, Japan

cluster centroid of the cluster Ck. We used the multipath component distance for d(·) [4], which
is basically a normalized Euclidean distance measure for multipath parameters. Clustering was
performed until convergence over all the dimensions of X simultaneously. The K-means clus-
tering algorithm is a locally optimized way of solving a combinatorial minimization problem
of identifying clusters, which is a nondeterministic polynomial-time hard (NP-hard) problem.
Thus K-means is only able to guarantee locally optimal results. Using simulated annealing, we
tried to circumvent this local minima feature. Simulated annealing is a stochastic optimization
strategy that is conceptually a Monte Carlo method modeled according to physical annealing
from statistical mechanics [5].

3. 2 Number of Clusters (K)

Determining the best K is difficult because it also requires a priori knowledge of the for-
mation of clusters in the environment, which is not practically available. Nonetheless, the
best K could be found by evaluating the clustering results using clustering validation indices.
A clustering validation index tells us about the quality of clustering results that could give
the best grouping. We used the global silhouette index, Davies-Bouldin index, the Calinski-
Harabasz index, the Kim-Parks index, and a dynamic index. The silhouette index, snk, could
measure how similar a multipath is to all multipaths in its own cluster k compared to all mul-
tipaths of the cluster nearest to it. It is expressed as, snk = (bnk − ank)/arg max{bnk, ank},
where ank = 1

|Ck|
∑

X∈Ck
d(Xn,Xm), (m |= n); while bnk = arg min

j |=k

{
1
|Cj |

∑
Xm∈Cj

d(Xnk,Xmj)
}
.

The best K could be found as KSI = arg max
K

{
1
K

∑
k

(
1
|Ck|

∑
n∈Ck

snk

)}
. The Davies-Bouldin

index is a function of the ratio of the intra-cluster separation sum (Si) to the inter-cluster sep-

aration. The best K is found as, KDB = arg min
K

{
1
K

∑
k

(
arg max

j |=k

{
Sk+Sj

d(µk,µj)

})}
where Si =

1
|Ci|

∑
n∈Ci

d(Xn, µi). As for the Calinski-Harabasz index, it is a ratio of the trace of the between-
cluster scatter matrix, B =

∑
k |Ck| d(µk,µ) dT(µk, µ), to the trace of the within-cluster scatter

matrix, W =
∑

k

∑
n∈Ck

d(Xn, µk) dT(Xn, µk), where µ is the global centroid. The best K is

expressed as KCH = arg max
K

{
Trace(B)/(K−1)

Trace(W)/(N−K)

}
. The Kim-Parks index is a function of the sum

of the total intra-cluster separation and the minimum distance between cluster centroids. Using

it, the best K is KKP = arg min
K





(
1
K

∑
k Sk

)
+ K

arg min
j |=k

{d(µk,µj)}



, where each summand of the

argument is normalized as, xarg = (x− xmin)/(xmax− xmin). For the dynamic index considered,
it tries to include the geometrical aspect of X while taking account of the affinity of each clus-

ter. It determines the best K as KDI = arg min
K





arg max{d(µk,µj)}
arg min

j |=k
{d(µk,µj)} + α

K

∑
n

∑
k var(Xn ∈ Ck)∑
n var(Xn)





where α = arg max{d(Xn,Xm)}
arg min

n |=m

{d(Xn,Xm)} ·
∑

n var(Xn)∑
n

∑2
k=1 var(Xn ∈ Ck)

while var(·) denotes the variance.
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Table 2: Example ν(K) for K = 2 to K = 5 and average rank aggregation
K νSI νDB νCH νKP νDI srSI srDB srCH srKP srDI sr

(∀sr)

2 0.572 0.705 84.281 0 36.365 3 3 2 4 2 3
3 0.587 0.561 114.321 0.245 31.087 4 4 4 3 4 4
4 0.446 0.731 92.7 1.044 35.525 2 2 3 2 3 2
5 0.318 0.865 74.684 2 39.494 1 1 1 1 1 1

3. 3 Average Rank Aggregation

Given a certain K, each argument in KSI, KDB, KCH, KKP, and KDI—denoted here by
ν(K)—has a different scale from one another, an example of which is in Table 2. Since these
ν(K)s differ in evaluating the qualities of the clustering results, it is also not straightforward to
normalize them to one scale. To address these issues and to not only depend on one clustering
validation result, we adopted the weighted voting aggregation of [6] but with our proposed mod-
ification: instead of scoring ν(K) by assigning weighted votes to each of them, we score them
by their statistical rank—sr(ν). This improves the determination of the best K as it does not
depend on weights. This strategy is shown in the same table using the ν(K) example, where the
result points that the best K is 3 based on the highest sr(·) of the sr(ν) average of all clustering
validation indices.

4. MIMO Clustering Results

We show our results in terms of the cluster power proportion—ratio of the cluster multipath
power to the received power, which includes the dense multipath components. Our results open
up concerns in coming up with the best multipath clustering as cluster significance plays a role
to whether a cluster should be considered or not. Cluster significance is critical since it may
positively or negatively impact the resulting cluster model. For example, if we have, say 100
multipaths that each has a −30 dB power, discarding them is tantamount to filtering −10 dB
from the received power. Items that goes in delimiting cluster significance not only includes
the power but spread thresholds as well, as it would determine the shape and characteristics of
clusters. Add to this the number of clusters, which must be considered carefully, as we would
see next. In Fig. 1(a), cluster C is the least cluster and seems to be negligible. It was grouped to
the nearest cluster for the K = 2 result in Fig. 1(b). However, neglecting it and just using the
K = 2 result may not be helpful when we see the distribution of the cluster power proportion.
Taking all the snapshots considered, the average K of the route is 3. We show its cluster power
proportion histogram in Fig. 1(c) and that of K = 2 in Fig. 1(d). It could be more observed
in those histograms that the distribution of cluster power should also be taken into account
as clusters are modeled because unnecessarily cutting them off, or removing least clusters may
not give an accurate picture of the channel. As could be seen, cluster C in Fig. 1(c) (which
represent least clusters), though small in power proportion, more of it occurs at the far right
end of the scale. These least clusters are increasing as the power proportion level decrease. So
even though cluster C is least, its contribution increases, given that it is within the threshold
suggested in [1]. Thus, the clusters in Fig. 1(c) portrays a better picture of multipath clustering
than that of Fig. 1(d), in which the significance of cluster C is effectively distributed to the two
clusters. Therefore, if the clustering results of Fig. 1(d) were taken, the subsequent model would
not be able to capture the characteristics of the other cluster and could result to unfaithful
reconstruction of clusters in the propagation channel.

5. Conclusion

We presented an optimized way of clustering where we used simulated annealing with K-
means algorithm in order to escape local minima. Included in the clustering approach is the
average rank aggregation strategy, which was proposed and used to improve the determination
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(a) K = 3 (b) K = 2

(c) Entire route; K = 3 (d) Entire route; K = 2

Figure 1: Results considering the cluster power and K

of K. Applying the approach to a small urban macrocell channel data measured at 4.5 GHz
and considering the distribution of the cluster power proportion, least clusters should not un-
necessarily be neglected in considering their significance so as to be able to have a satisfactorily
accurate characterization of the channel.
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