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1. Introduction 
 
 The wave phenomena associated with the class of bi-isotropic (BI) materials had attracted 
great interests for over two decades due to their extra medium parameter which gives additional 
freedom in designing various microwave devices [1].  Promising applications in antennas including 
the polarization rotating lenses and the compact microstrip antennas as well as microwave devices 
and radar engineering are all based on BI materials [1,2].   

In the past, efforts have been focused on the development of equivalent parameters in order 
to treat a BI medium as an isotropic one [2].  Finite-Difference Time-Domain (BI-FDTD) technique 
had been applied for formulation of modelling wave interactions with BI media based on the 
decomposition of wavefields [3,4].  Additionally, time-domain modelling for electromagnetic wave 
propagation in BI media based on the Transmission Line Matrix (TLM) approach had also been 
proposed [5,6].   

In this paper, we present a new approach to the propagation of uniform plane wave in BI 
media.  While the case of normal incidence is the main focus in this paper, the same approach can 
be applied for the oblique incidence case as well.  Firstly, we employ the technique of Scalarization 
to simplify the Maxwell equations in vector form to become a set of scalar ones, and then introduce 
the concept of perturbation analysis to exhibit the effect of the bi-isotropy on the wave 
characteristics in general.  The method of analysis is based on the development of the dispersion 
relation of a BI medium, so that the result obtained are cast in a concise form and will appear as an 
extension of well known ones of isotropic media.  In particular, the familiar technique of equivalent 
circuit is developed to enhance the understanding of the wave phenomena associated with BI media.  
 
2. Scalarization of Maxwell equations 

 For the electromagnetic fields of the time variation, ejωt, the source-free Maxwell equations 
for electromagnetic waves propagating in a bi-isotropic medium are written as: 

 E j Bω∇ × = −     (1a) 

 H j Dω∇ × =  (1b) 

where , , ,E D B H are the electromagnetic field vectors.  In a general BI medium, the constitutive 
relations can be expressed as:  

                                                       D E Hε ξ= +                                                                (2a)   

                                                       B E Hζ μ= +                                                                (2b)   

with ε and μ being the permeability and permittivity of the medium, and ζ and ξ are the BI 
coefficients.  Based on the law of energy conservation, it is required that the bi-isotropic 
coefficients be generally expressed by: jζ ξ χ κ∗= = + , where χ is the Tellegen coefficient and κ is 
the chirality coefficient.   



Without the loss of generality, consider a uniform plane wave that is propagating in a specific 
direction, say the z-direction, so that the Maxwell equations are reduced to a set of first-order 
coupled differential equations for the two-dimensional transverse field vectors, Et and Ht, and 
another set for the scalar longitudinal components, Ez and Hz, as given below: 

 [ ]( ) ( ) ( )o t t t
d z E z j H z j E z
dz

ωμ ωζ× = − −  (3a) 

 [ ]( ) ( ) [ ( )]t o t o t
d H z j z E z j z H z
dz

ωε ωξ= − × − ×  (3b) 

 0 ( ) ( )z zH z E zωμ ωζ= +  (3c) 
 0 ( ) ( )z zE z H zωε ωξ= +  (3d) 

Evidently, the two sets of equations for the transverse and longitudinal components are decoupled, 
and may be treated separately.  First of all, (3c) and (3d) form a system of linear homogeneous 
equations which admits a non-trivial solution if and only if the με = ξζ; otherwise, we have the 
trivial solution: Ez = Hz = 0, corresponding to a TEM mode with respect to the direction of 
propagation.  Under the special condition, με = ξζ, we may have a longitudinal wave with the two 
longitudinal components of the fields mutually related by: Hz = - εζ

μξ
Ez. The exploration of 

possible physical implications of such a longitudinal wave should be left to the advancement of 
technology in the future to develop an artificial material to satisfy the special condition: με = ξζ; 
throughout this work, we shall assume that the medium parameters satisfy the condition: με > ξζ. 

(3a) and (3b) form a system of four coupled first-order differential equations, as shown below: 

 [ ] [ ]( ) ( ) 1 ( )o t t o o t
d z E z j H z j z z E z
dz

ωμ ωζ× = − + × ⋅ ×  (4a) 

 [ ]( ) ( ) 1 ( )t o t o t
d H z j z E z j z H z
dz

ωε ωξ= − × − × ⋅  (4b) 

where 1 is a two dimensional unit dyadic.  The coefficient dyadics, 1 and 1 oz× , are commutative to 
each other and they share the same set of orthonormal eigenvectors on the transverse plane, as given 
by: 

 ( )1
1
2 o o

u x j y= −  (5a) 

 ( )2
1
2 o o

u x j y= +  (5b) 

Physically, the two eigenvectors, u1 is recognized as the right-hand circularly polarized (RCP) mode, 
and u2 as the left-hand circularly polarized (LCP) mode, if they stands for the electric and magnetic 
field vectors. 

In terms of the orthonormal set of eigenvectors, the transverse electric and magnetic fields 
may be represented generally as: 

 1 21 2( ) ( ) ( )o tz E z V z u V z u× = +  (6a) 
 1 21 2( ) ( ) ( )tH z I z u I z u= +  (6b) 

where the V’s and I’s describe longitudinal variations of the electric and magnetic fields.  
Substituting the last two expressions into the two equations in (4), we obtain the following coupled 
system of ordinary differential equations of the first order: 

 ( ) ( ) ( 1) ( )m
m m m

d V z j I z V z
dz

ωμ ωζ= − + −  (7a) 

 ( ) ( ) ( 1) ( )m
m m m

d I z j V z I z
dz

ωε ωξ= − − −  (7b) 

for m = 1 and 2.  What we have achieved so far is the scalarization of the Maxwell equations in 
vector form to become two sets of scalar differential equations of the first order, one for the RCP 



and the other for LCP modes.  Additionally, the general solutions of (7) yield the basic 
transmission-line equations for the forward travelling of RCP mode and the backward travelling of 
the LCP mode. 

3. Dispersion Relation of BI Medium 
The last term in (7a) is due to the effect of perturbation by the bi-isotropy, resulting in the 

equivalent voltage source and that in (7b) as the equivalent current source along the transmission 
line.  Both equivalent sources depend on the local field strength; therefore, they belong to the class 
of dependent sources, as shown in Fig. 1.  It is noted that the polarities of the dependent sources will 
affect the propagation of waves in the two opposite direction along the transmission line. 

 
Figure 1: Equivalent Network for bi-isotropic medium:L = μ, C = ε, Vs = ωζV1 and Is = ωξI1 

Replacing d dz  by –jk in (7) with proper algebraic operations, the following dispersion 
relation for the BI medium can be derived: 

2 2( 1) 0 ,   for m  1 and 2m
p pk j k kδ+ − − = =  (8) 

 ( )2 2
pk ω με ζξ= −  (9a) 

 ζ ξδ
με ζξ

−
=

−
 (9b) 

The dispersion relation is a quadratic equation from which two roots are expected.  Once the 
dispersion roots are determined, the wave admittance and impedance are determined accordingly.  
The results are altogether summarized in Table 1 below. 

 

Table 1 Characteristics of wave propagation in BI medium 

 Mode 1: RCP Mode 2: LCP 

Eigenvector 1 o o
u x j y= −  

2 o o
u x j y= +  

Dispersion Relation 2 2 0p pk j k kδ+ − =  2 2 0p pk j k kδ− − =  
Propagation Direction Forward Travelling  Backward Travelling  Forward Travelling  Backward Travelling  

Eigenvalues 1
j

pk k k e θ−= =  2
j

pk k k e θ= − = −  2
j

pk k k e θ= =  1
j

pk k k e θ−= − = −  

Admittance ( )1 1
1Y k jωζ

ωμ
= +  ( )2 2

1Y k jωζ
ωμ

= −  ( )2 2
1Y k jωζ

ωμ
= −  ( )1 1

1Y k jωζ
ωμ

= +  

Impedance ( )1 1
1Z k jωξ

ωε
= −  ( )2 2

1Z k jωξ
ωε

= +  ( )2 2
1Z k jωξ

ωε
= +  ( )1 1

1Z k jωξ
ωε

= −  

Remarks   1sin
2

θ δ=  

 

－ LΔz

IsΔz
VsΔz 

(a) Transmission Line

＋

CΔzV1 

I2 

V2 

Δz

(b) Circuit Model

I1 



 
We observe that the dispersion relations for RCP and LCP modes differ from each other only by the 
sign of δ; thus, the propagation characteristics of one mode can be obtained from those of the other 
mode by a simple change of the signs of ξ and ζ,.   From the perturbation point of view, we may say 
that the bi-isotropy cause a positive (negative) effect on the RCP (LCP) mode.   
 
4. Boundary-Value problem: scattering of plane wave by a single 
interface between isotropic and bi-isotropic half-spaces 
    Consider a uniform plane wave that is linearly polarized in the x-direction and is incident 
normally onto the interface between the air region (z < 0) and a bi-isotropic half space (z > 0).   
Since the eigenvectors, 1u  and 2u , are independent of the medium, they can be used for the 
representations of the electric and magnetic fields in the bi-isotropic as well as isotropic media.  The 
incident, reflected, and transmitted fields can then be represented as: 

 ( ) ( )( ) ( )
1 2 1 2

1 1( ) ; ( )
2 2

o o o oinc incjk z jk z jk z jk z
o t to oinc inc a inc a incz E z V x e V u u e H z Y V x e Y V u u e− − − −× = = + = = +       (10a) 

       ( ) ( )( ) ( )( ) ( ) ( ) ( )
1 2 1 21 2 1 2

1 1( ) ; ( )
2 2

o orefl refljk z jk zrefl refl refl refl
t to az E z V u V u e H z Y V u V u e× = + = − +             (10b) 

( )1 2 1 2( ) ( )( ) ( ) ( ) ( )
1 2 1 21 2 1 2( ) ; ( )tran tranjk z jk z jk z jk ztran tran tran tran

o t t oz E z V u e V u e H z Y V a e V a e× = + = +                 (10c) 

Applying proper boundary conditions at the z = 0 interface, the reflection (Γm) and transmission (Tm) 
coefficients of the mth mode can be readily derived as: 

                                     
( )

( ) ; 1o m
m m m

o m

Y Y T
Y Y

+

+

−
Γ = = + Γ

+
                                                                     (11) 

5. Conclusion 
 

We have presented a unified approach to the analysis of wave propagation in bi-isotropic 
media.  The concept of perturbation analysis is employed for a easy understanding of the physical 
processes involved, but the mathematical formulation is an exact one to establish a solid foundation 
for the ensuing study in every aspect.  Through the development of dispersion relation and 
equivalent network, the results are cast in the form that is well known in the microwave community. 
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