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1. Introduction 
 
 Digital beamforming (DBF) is a rapidly developing technology which is the most advanced 
approach to array antenna pattern control. When implemented at the array element level, DBF 
enables full utilization of the maximum number of degrees of freedom in the array, leading to 
significant improvements in beamforming of simultaneous multiple independent beams, adaptive 
pattern nulling, space-time adaptive processing (STAP), and direction finding (DF), compared to 
traditional analog array control techniques. In order to suppress the interference from the 
environment, nulls are placed in the antenna patterns in the direction of interfering source and signal 
reflections. The nulls can be narrow nulls or wide nulls. Because of the increasing electromagnetic 
pollution of the environment, the technique of placing wide nulls to suppress the interference from 
wideband jammer becomes more important nowadays [1]-[3].  
 Steering nulls and adjusting SLL can be achieved by controlling the amplitude and phase of 
signal at each antenna element. In a DBF array, controlling the amplitude and phase of a signal is 
realized by multiplying a complex number, often called a complex weight. The complex weights are 
altered adaptively to maximize the communication channel. In this study, a powerful and efficient 
Particle Swarm Optimization (PSO) technique [4] is studied and applied to adaptive wide nulling 
for arbitrary DBF Array. Compared to another very popular optimization tool, Genetic Algorithm 
(GA) [5], PSO is much simpler and easier to implement because the particles inside the swarm 
update only based on the internal velocity, there are no crossover and mutation operations involved. 
Moreover, the study indicates that PSO can converge faster when solving the beamforming problem 
[6], [7].  Detailed information about this approach will be provided in the following context. 
 
2. Problem Formulation 
 
 It is well known that for beamforming, the pattern function of an arbitrary N-element array with 
identical elements can be expressed by (1): 

( , ) ( , )Tθ φ θ φ= ⋅F w S                                                                   (1) 

where { }nw=w  is a complex weighting column vector, ( , ) {exp( )}n rjkθ φ =S r ai is the steering 
column vector, and rn the element location vectors, ar the unit vector of distance ray,  

n x n y n z nx y z= + +r a a a  

sin cos sin sin cosr x y zθ φ θ φ θ= + +a a a a  

θ and φ are elevation and azimuth angles of the spherical coordinate, respectively. 
 The major task of adaptive digital beamforming is to find the proper complex weight for each 
antenna element, so that desired pattern shape, including sidelobe level (SLL) suppression and null 
formation, can be achieved.  
 



3. Particle Swarm Optimization and Solution Procedures 
 
 Particle Swarm Optimization (PSO) is a stochastic optimization technique which mimics the 
social behaviour of bird flocks and fish swarms [4]. The initial swarm is generated randomly within 
the bounded space. The particle inside the swarm updates its position based on its own experience 
and the experience of other particles, until any of termination criteria is satisfied. The interactions 
among particles inside the swarm are described as "Swarm Intelligence". 
 We use the standard PSO algorithm to optimize (1) and the detailed procedures are described as 
follows. 
3.1 Variable Encoding and Initialization 
 The complex weights are represented by the particles inside the swarm. Each particle is a vector 
of float numbers and the length of the vector equals to double of the antenna array's length. The first 
half of the vector represents the real part of the complex weight, and the second half represents the 
imaginary part. The real part and imaginary part are combined together when evaluating the fitness, 
but are handled separately during updating operations. 
 The optimizer initially generates a group of, say M, random weighting vectors as potential 
solutions. Each weighting vector is called a particle with its fitness value evaluated from the 
specified objective function. In this study, we choose M=100 and also introduce a pattern in the 
initial swarm from the classic Chebyshev solution of the specified SLL in order to accelerate the 
optimization process. 
3.2 Fitness Definition and Evaluation 
 The input beam pattern is formed based on the input parameter vector which is denoted by [null 
pointing direction, null width, null depth, sidelobe level, main beam pointing direction, main beam 
width]. The dotted line in Figure 1 illustrates a sample ideal beam pattern with the parameter vector 
equals to [36, 14, 30, -20, 90, 30]. 

 
Figure 1. Desired pattern template and fitness evaluation. 

 
 The error of a solution is measured by summation of the area of a test pattern exceeding the 
ideal beam pattern template, as the shading area shown in Figure 1. The optimization objective is to 
minimize the error or find the set of complex weights for a pattern “particle” with zero error or the 
smallest error compared to other pattern “particles”. 
3.3 Swarm Update and Termination Criteria 

Each particle will keep track of its positions in the problem space and store the position with the 
best fitness value it has achieved so far as the population best, say, Pbest. The optimizer will also 
keep track of the particle position that has the best fitness value obtained so far by any particle in 
the population. This position is taken as the global best, say, Gbest. The population best and the 
global best are initialized as the following: 

 and arg min ( ), 1,...,j j j
best best TotalObj j M← ← =P Φ G Φ                       (2) 



After initialization, iteration progress will begin. In each iteration, particles are employed to 
evaluate their fitness values based the objective function, and the fitness values are taken to update 
the Gbest and Pbest. Afterwards each particle would be updated according to (3) and (4): 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 0,1 0,1best besti i i i i iα β γ+ = ⋅ + ⋅ − + ⋅ −V V U P X U G X: :              (3) 

                                         ( ) ( ) ( )1i i i+ = +X X V                                                             (4) 

where X(i) is the particle position of the ith iteration and X(i+1) is the particle position of the        
following iteration, V(i) is the velocity of the ith iteration, V(i+1) the next iteration, α is inertia 
weight, β and γ  are learning factors, U(0,1) is a random vector with elements uniformly distributed 
in the region of [0,1], operator :means the Hadamard matrix operator. The selection of parameters 
α, β, and γ can be referred to [8], that is, β = γ = 2 and α has an initial value around 1 and gradually 
declines towards 0. In this study, we set α to change gradually from 0.95 to 0.3. PSO will iterate 
until the desired fitness value is achieved or a given maximum number of iterations is reached. 
 The maximum number of iterations and the desired error goal are defined before the loop starts. 
PSO exit the loop if either one of the above criteria is satisfied. The figure which plots the pattern 
function together with the ideal beam pattern is updated at every 5 iterations. A log file of the PSO 
process in terms of the increasing fitness, and the matrix representing the swarm are stored in the 
hard disk for future reviewing. 

 
4. Simulation Results 
 
 To show the effectiveness of this approach, the proposed PSO approach is tested by solving 
beamforming for adaptive wide nulling of a linear array. 
 Assuming a linear antenna array with N isotropic sources that are equally spaced, we have the 
steering vector expressed by (5):  

1( ) exp ( )(cos cos )
2 m

Njkd nφ φ φ⎧ + ⎫⎛ ⎞= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

S                                      (5) 

where mφ  is the main bam pointing direction provided the elevation is fixed at 90°. If the main 
beam pointing direction in above equation is changed, the same set of complex weights for the main 
beam at broadside can still be used. 
 PSO progresses not as fast as GA at the first few iterations. However, when iterations go 
on, the PSO solution gets improved much fast than that of GA at the same number of generations. 
To get a satisfactory solution, the number of iterations for PSO is averaged at about 300. For the 
examples shown in Figures 2 and 3, the dot-dash lines depict the template casted for that case while 
the solid line represent the resultant patterns computed by the PSO with the optimum weights.  
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Figure 2. Wide null of 25 degree width and 25 degree depth with respect to SLL. 
 



 Figure 2 shows null steering examples with same SLL of −25dB and a wide null with the depth 
of −25dB and width of 25 degrees azimuth. In Figure 2(a), the null is steered to stretch from 10 to 
35 degrees azimuth, and it is later steered to extend from 20 to 50 degrees and 40 to 65 degrees in 
Figure 2(b) and Figure 2(c) respectively.   
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Figure 3. Wide null of 25 degree width in the right side  
and 35 degree depth with respect to SLL. 

 
 Figure 3 gives more wide nulling and steering examples with same SLL of −30 dB and the null 
locating on the right side of the main beam. 
 
Conclusion 
 
 In this study, Particle Swarm Optimization (PSO) is applied for adaptive wide nulling or null 
steering in digital beamforming arrays. The presented PSO approach has been proven to be much 
simpler and efficient than many genetic algorithms (GA) based approaches for beamforming 
including sidelobe suppression, wide nulling, and null steering. The presented approach can be 
easily applied to any other beamforming for arbitrary arrays.  
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