Closed-Form Explicit Formula for the TOA-Distribution of Multipaths between a Mis-Aligned Directional Transceiver \& an Omni-Directional Transceiver Enclosed among Scatterers

Chi-Ling Jerry LAM, Kainam Thomas WONG*, and Yue Ivan WU Department of Electronic \& Information Engineering, Hong Kong Polytechnic University, Hung Hom, KLN, Hong Kong (ktwong@ieee.org)

Abstract

This work is first in the "geometric modeling" literature to derive a closedform explicit formula for the time-of-arrival (TOA) distribution of the uplink/downlink multipaths between an omni-directional transceiver and a (possibly mis-aligned) directional transceiver that points directional beam towards an arbitrary direction. This propagation-model idealizes the scatterers as uniformly distributed spatially over a circular disc, which encloses the omnidirectional transceiver and is centered at the directional transceiver. However, the directional beam-width reduces the effective scattering spatial region from a circular disc to a "pie-cut" shape. This proposed model allows the omnidirectional transceiver to lie anywhere inside this pie-cut region, depending on the directional beam mis-alignment.

1 Introduction

Directional antennas have been in use in cellular communications for space-division multiple-access and for beamforming. For "geometrical models" involving directional antennas, [1] and [2] analytically derive closed-form formulas for the multipaths' direction-of-arrival (DOA) distribution and time-of-arrival (TOA) distribution, respectively. There, a directional transmitter is modeled to lie at the center of a circular-disc scatterer region, within which lies a wireless receiver. (The wireless receiver is often enclosed by proximate scatterers, especially in highly clustered propagation environments, e.g., for a low-lying receiver or for indoor.) With the transmitter's directionality, this circular-disc scatterer region becomes effectively "pie-cut" in shape, with the pie-cut's "angular width" defined by the directional transmitter's azimuth-beam-width (which is symbolized by β in Figure 1). However, the derivations in [1] and [2] deal only with the case of the transmit-beam's beam-center aligning exactly towards the direction of the receiver. In field operations, however, non-negligible beam-pointing errors would likely exist with the transmit-beam. Hence, this paper relaxes the above limitation in [1] and [2] so as to allow arbitrary mis-alignment in the transmit-beam pointing direction. However, this paper still succeeds in deriving a closed-form TOA-distribution formula for this more complex geometric model. Indeed, this new derivation covers even the case when the receiver lies outside the transmit-beamwidth.

2 The Present "Pie Cut" Geometric Model

The scatterers are uniformly distributed over a circular disc, of radius R and centered at the origin of a two-dimensional Cartesian plane. Located at this origin is a directional transmitter (Tx), with a beamwidth spanning the azimuth range of [β_{1}, β_{2}] where $-\pi / 2 \leq \beta_{1}<0<\beta_{2} \leq \pi / 2$. The receiver (Rx) is omni-directional and is located (without loss of generality) at the Cartesian coordinates ($D, 0$), where $D \leq R$. Please refer to Figure 1 .

Because the transmitter's azimuth-beam-width is limited, only those scatterers within the above azimuth-angular sector would have any multipath bouncing off them onwards to the receiver. Hence, the scatterers' effective spatial density may be idealized as

$$
\begin{align*}
& f_{x, y}(x, y) \tag{1}\\
& = \begin{cases}\frac{1}{\beta R^{2}}, & \text { if }\left(x^{2}+y^{2} \leq R^{2}\right) \&\left(\arctan \left|\frac{y}{x}\right| \leq \beta_{2}\right) \&\left(\arctan \left|\frac{y}{x}\right| \geq \beta_{1}\right) \&(x \geq 0) \\
0, & \text { otherwise. }\end{cases}
\end{align*}
$$

The above corresponds to the shaded "pie-cut" region in Figure 1.
Like all earlier papers that analytically derive closed-form explicit expressions of the TOA-distribution based on geometrical models, these four standard assumptions are made: (a) Each propagation path, from the mobile to the base-station, reflects off exactly one scatterer. (b) Each scatterer acts (independently of other scatterers) as an omni-directional lossless re-transmitter. (c) Negligible complex-phase effects in the receiving-antenna's vector-summation of its arriving multipaths. That is, all arriving multipaths arriving at each receiving-antenna are assumed to be temporally in-phase among themselves. (d) Polarizational effects may be ignored.

3 The Derived Distribution of the Multipaths' TOA

Three sub-cases exist:
(1) When the pie-cut arc (but not necessarily the pie-cut's straight edges) lies entirely outside the elliptical rim (except possibly at one "tangential" point), the ellipse and the pie-cut boundary cross over each other at only two points.
(2) This is when the pie-cut arc lies at least partly inside the elliptical rim.
(3) When the pie-cut region lies completely inside the ellipse, the TOA distributiondensity thus equals $f_{\tau}(\tau)=0$.

Presented below is the analytically derived TOA-distribution of the arriving multipaths. (The detailed derivation will be presented in a future journal-edition of this
work.)
$f_{\tau}(\tau)= \begin{cases}\frac{1}{A}\left[h\left(\tau, \beta_{2}\right)-h\left(\tau, \beta_{1}\right)\right], & \text { for } \tau \in\left[\frac{D}{c}, \frac{D}{c} \eta\right] \\ \frac{1}{A}\left\{H\left(R-r\left(\tau, \beta_{2}\right)\right)\left[h\left(\tau, \beta_{2}\right)-h\left(\tau, \theta_{0}(\tau)\right)\right]\right. & \\ \left.-H\left(R-r\left(\tau, \beta_{1}\right)\right)\left[h\left(\tau, \beta_{1}\right)+h\left(\tau, \theta_{0}(\tau)\right)\right]\right\}, & \text { for } \tau \in\left[\frac{D}{c} \eta, \frac{D}{c} \max \left\{\rho_{1}, \rho_{2}\right\}\right] \\ 0, & \text { Otherwise }\end{cases}$
where

$$
\begin{aligned}
& H(\alpha)= \begin{cases}0, & \alpha \leq 0 \\
1, & \alpha>0\end{cases} \\
& \eta=2 \frac{R}{D}-1 \\
& \rho_{1}=\frac{R}{D}+\underbrace{\sqrt{\left(\frac{R}{D}\right)^{2}-2\left(\frac{R}{D} \cos \beta_{1}\right)+1}}_{=\xi_{1}} \\
& \rho_{2}=\frac{R}{D}+\underbrace{\sqrt{\left(\frac{R}{D}\right)^{2}-2\left(\frac{R}{D} \cos \beta_{2}\right)+1}}_{=\xi_{2}}
\end{aligned}
$$

$H($.$) , in the middle case in (2), switches among three sub-cases under case (2). The$ derived (2) is plotted in Figures 2 to 4.

For each propagation-path traveling from a directional transmitter to the omnidirectional receiver, there would exist a corresponding propagation-path traversing the same spatial route but in the opposite direction, but with the receiver now being directional and the transmitter now being omni-directional. Hence, the same TOA distribution could apply for both the uplink and the downlink.

References

[1] L. Jiang \& S. Y. Tan, "Simple Geometrical-Based AOA Model for Mobile Communication Systems," IEE Electronics Letters, vol. 40, no. 19, pp. 1203-1205, September 2004.
[2] L. Jiang \& S. Y. Tan, "Geometrically-Based Channel Model for MobileCommunication Systems," Microwave and Optical Technology Letters, vol. 45, no. 6, pp. 522-527, June 2005.

Figure 1: Geometry of pie-cut model relating the transmitter, the scatterers' effective spatial region, and the receiver.

Figure 3: $f_{\tau}(\tau)$ at $R=10$ meters, $\mathrm{BW}=$ $\pi / 2, D=5$ meters, and $\alpha=0^{\circ}, 25^{\circ}, 45^{\circ}$.

Figure 4: $f_{\tau}(\tau)$ at $R=10$ meters, $\alpha=0$, $D=5$ meters for $B W=20^{\circ}, 45^{\circ}, 90^{\circ}$.

