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1 Introduction

Recent remarkable developments in mathematical physics are encouraged by borderless inter-
actions between pure mathematics and physics. For example, even in ‘pure’ classical physics
such as mechanics is much influenced by analyses on manifolds including differential geometry
and topology[1]. There, one of the central concepts is the Lagrangian submanifolds, and it even
found a way in asymptotic analyses of the wave phenomena such as the Maslov’s method[2].
Because the Maxwell’s equations are partial differential equations, it is quite natural that the
initial approaches were based on calculus. However, to the authors’ impression, applications
of algebraic techniques are very limited for antenna theories while a number of available math-
ematical tools do exist. In this talk, some trials are described. It is shown that there are rich
algebraic structures in the antenna arrays. Although mathematical techniques used here are well
established and even ‘classic’ for mathematicians, it is hoped that antenna engineers may find
something ‘modern’ flavor.

2 Absolute Arrays of Arrays Principle

Let us summarize the previously reported result called the absolute arrays of arrays principle[3].
It provides general frameworks to attack the antenna arrays as mathematical objects.

An array factor, i.e. Schelkunoff polynomial FP (z), of a linear antenna array with P radiat-
ing elements is expressed as follows[4]:

FP (z) = a0 + a1z + a2z
2 + · · ·+ aP−1z

P−1,

where am, (m = 0, 1, 2, · · · , P − 1) are complex array excitation coefficients. We assume that
the position of m-th element is md, the observation angle is θ from the boresight, and the array
is operated at the wavelength λ. Then z is given as follows:

z = e2πju,

u =
d

λ
sin θ,



where u is the universal parameter. In case that a beam is steered to an angle θ0, the correspond-
ing phase term can be conveniently extracted from am as,

u =
d

λ
(sin θ − sin θ0).

If FP (z) is factorized into,

FP (z) = F (1)
p1

(z)F (2)
p2

(zp1) · · ·F (n)
pn

(zp1p2···pn−1),

the arrays of arrays principle is readily applied by considering the subarrays as radiating ele-
ments, where the m-th subarray factor with K elements is given by the following form,

F
(m)
K (z) = a

(m)
0 + a

(m)
1 z + · · ·+ a

(m)
K−1z

K−1,

with a
(m)
i ∈ C, (0 ≤ i ≤ K − 1).

To implement ‘modern’ mathematics, we need to observe that (1) is a product of functions
over covering spaces of algebraic curves[5][6]:

z
hp1−−−−−→ zp1

hp2−−−−−→ zp1p2
hp3−−−−−→ · · · hpn−1−−−−−−−→ zp1p2···pn−1 , (1)

where hn : C∗ → C∗; z �→ zn, and C∗ is defined to be the set C − {0}. Each hn gives un-
branched covering[6] and the tower results from Kummer extensions[7] of algebraic functions.
It is a tower of Galois coverings[5][6] and its structure is completely determined by the Jor-
dan=Hölder theorem[7]. The following theorem is obtained.

[General Array Factorization Theorem][3] A Schelkunoff polynomial of a linear array with
P elements can be regarded as a function over a tower of Galois coverings. Arrays of Arrays
Principle is determined by a projective system of Z/PZ. In particular, the system which corre-
sponds a composition series of Z/PZ gives the longest tower of the Galois coverings.

To treat the case of infinite arrays, algebraic geometry is applied. The corresponding Galois
coverings X are governed by the Grothendieck’s étale fundamental group πet

1 (X)[8] which is
regarded as the absolute Galois group[9]. In this case, πet

1 (X) = Ẑ, where Ẑ is the profinite
completion of the set of integers regarded as an additive group. Accounting freedom of all pos-
sible implementation of feeding networks and partial expansion of factorized subarray pattern
(sub-product[10]), and attributing the operation to the symbolAP , we finally have the following
‘Absolute Arrays of Arrays Principle,’

AP Ẑ.

The quantity generates all possible topologies of array pattern factorization, including the topolo-
gies of the feeding networks, in the category of towers of Galois coverings.

3 Duality in Antenna Arrays

The approach in the previous section is very much geometric: Application of the theory of
covering spaces. However, purely algebraic approach is also possible because the structure of
a uniformly spaced linear array is rather simple. The alternative tool is the duality of Abelian



groups. First of all, let us summarize. Let G and C× be an Abelian group and a multiplicative
group of complex numbers, respectively. Homomorphisms G̃ = Hom(G, C×) from G to C×

constitute Abelian groups called characters of G or the dual of G. If written additively, the
expression G̃ = Hom(G, R/Z) is homeomorphic to the former. The following relations exit in
the additive notation,

[Duality of Abelian Groups][11] Let G be a finite additive Abelian group. If subgroups
H ⊂ G and Φ ⊂ G̃ satisfy the following relations,

H⊥ = {χ ∈ G̃ | χ(h) = 0 (∀h ∈ H)},
Φ⊥ = {x ∈ G | χ(x) = 0 (∀χ ∈ Φ)},

then H⊥ and Φ⊥ are subgroups of G̃ and G, respectively, and there are the following canonical
homeomorphisms,

H⊥ ∼= G̃/H, G̃/H⊥ ∼= H̃.

Furthermore, there are ‘Galois’ correspondences H ←→ H⊥, Φ⊥ ←→ Φ such that

(H⊥)⊥ ∼= H, (Φ⊥)⊥ ∼= Φ.

The set G⊥ is called an annihilator of G. The application of the theorem to (1) is immediate. It
is known that n in the map hn : C∗ → C∗; z �→ zn contributes to array arrangement[3]. The
tower (1) gives the following sequence of additive groups,

Z ⊃ p1Z ⊃ p1p2Z ⊃ p1p2p3Z ⊃ · · ·
The corresponding annihilators in the character groups are as follows:

R/Z ⊂ R/p1Z ⊂ R/p1p2Z ⊂ R/p1p2p3Z ⊂ · · ·
If G ⊃ H and the corresponding annihilators are X/G and X/H , respectively, where X is
the annihilator of the unit element of G, then the ‘Galois’ group of X/G ⊂ X/H is given by
G/H[5][6]. In the above case, for example, the Galois group of the first part R/Z ⊂ R/p1Z is
Z/p1Z. With this observation, the previously reported theory [3] can be recovered with simpler
considerations. For other aspects including the physical meaning of the action of Galois groups
will not be repeated here.

4 Pontryagin Duality, Schelkunoff Circle, and Torus

In this section, we try to understand mathematical counterpart of the Schelkunoff’s unit circle[4]
T = {z ∈ C× | |z| = 1} � R/Z. T is also called one dimensional torus. A n dimensional
torus Tn can be also defined by taking its direct product n times. Theory of topological groups
gives the relation[11],

Z̃ ∼= T.

The following theorem is well-known,



[Pontryagin Duality Theorem][11] Let G be a locally compact Abelian group. A map η :
G→ G̃ defined by

η(x)(χ) = χ(x)

for x ∈ G and χ ∈ G̃ gives canonical algebraic and topological homeomorphisms.

Therefore ˜̃Z ∼= T̃ ∼= Z, for example. The Z̃ ∼= T says that the dual of a discrete group Z is a
compact group T, and T̃ ∼= Z has the opposite property. For a uniformly spaced linear array,
m ∈ Z can be regarded as the m-th a position of radiating elements. Therefore the discrete
group Z represents the array arrangement and the Schelkunoff’s unit circle T is its compact
dual. More explicitly, the array arrangement is Z in the universal parameter space u, and the
character is homeomorphic to T, the Schelkunoff’s unit circle, because

Hom(Z, R/Z) ∼= R/Z,

by choosing the map from the generating element 1 ∈ Z to a point on T. It is also true for Zn,
n times direct product of Z, there is a homeomorphism,

˜Zn ∼= Tn.

In particular, we can define a ‘Schelkunoff torus’ T2 ∼= T×T for a two dimensional array. It is
exactly a torus in our ordinary sense.

5 Conclusion

Trials are reported for attacking the antenna array theory by algebraic techniques. It is shown
that the duality theorems of Abelian groups provides a simple view of the Schelkunoff’s unit
circle as a compact dual group of a discrete array arrangement. The authors hope that engineers
will pay more attention to algebra and extensively apply the methodology in antenna theory.
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