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1. Introduction 
 

Periodic dielectric or metallic structures have been a subject of continuing interest because of their 
wide applications to frequency selective or polarization selective components in microwaves to optical 
wave regions. Among them, three-dimensional gratings, sometimes referred to as crossed-gratings, 
have many applications such as antireflection layers, beam splitters, phase plates, narrow-band filters, 
substrates for radiating elements, and so on. The three-dimensional grating is formed by arranging the 
diffractive elements periodically in two non-collinear directions on a planar structure.  To date, 
various numerical techniques have been developed to model the electromagnetic scattering from 
periodic structures, such as the differential method, the Fourier modal method, the method of moments, 
the mode-matching method, the finite-element method, and the time-domain method. 

In this paper, we shall discuss a novel numerical method in the frequency domain that applies to 
both of dielectric gratings and metallic gratings under the same algorithm. The method uses a concept 
of the double periodic magneto-dielectric layer [1] to a three-dimensional grating and formulates a set 
of volume integral equations [2] for the equivalent electric and magnetic polarization currents of the 
assumed periodic layer in vectorial form. The integral equations are solved using the integral 
functionals [3] characterizing the spectral amplitudes of the polarization currents distributions. Once 
the integral functionals are determined, the scattered fields outside the layer can be calculated 
accordingly without performing the modal analysis of the electric and magnetic fields inside the 
grating layer. The proposed method is quite general and applies to various grating geometries 
distributed periodically along any two coordinates. We shall present numerical examples for a two 
layered gratings consisting of crossed rectangular dielectric rods. It is shown that the polarization of 
the scattered field can be controllable by properly choosing the crossing angle between the rods. 
 

2. Formulation 
 

To illustrate the formulation process, we consider a single layer of doubly periodic 
magneto-dielectric medium as shown in Fig. 1. A linearly polarized plane wave of unit amplitude is 
incident from the half space ( z <0 ) on a double-periodic layer of magneto-dielectric medium at an 
angleθ  with respect to the z - axis.  The incident plane wave can be expressed as a superposition of 
the TE wave and the TM wave. For the TE (TM) wave, the electric (magnetic) field vector 0 ( )E r  
( 0 ( )H r ) of the incident wave is lying in the x y-  plane and polarized with an angle ϕ  with respect 
to the x - axis. The doubly periodic layer with a thickness h  is comprised of a periodic arrangement 
of parallelepipeds in the 1 1x y z- -  coordinates. The 1x - axis is parallel to the x - axis, whereas the 

1y - axis forms an angle β�  with respect to the y - axis. The unit cell with periods
1xL and 1yL along 

the 1x - and 1y - axes contains several parallelepiped blocks characterized by the complex-valued 
relative permittivity and permeability of step functions profiles. The relative permittivity and 
permeability of the i - th block in the 1x - direction and j - th block in the 1y - direction are denoted 
by ijε  and ijµ , respectively. Then the equivalent electric polarization currents 1 1( , , )

e
ij x y zJ and 

magnetic polarization currents 1 1( , , )
h
ij x y zJ  in each of unit-cell segments are related to the electric 

and magnetic fields in the segments as follows: 
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Using the polarization current densities ( )
e
ijJ r  

and ( )
h
ijJ r , the total electric field in the whole 

space are expressed as follows: 
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where r is an observation point, ′r is the 
source point, 0 ( )E r and 2 /k π λ=  are the electric field and the wave number of excitation, V is the 
scattering volume, xM and yM denote the total numbers of the segments per unit cell along the 1x - 
and 1y -axes, and ( , )G ′r r  denotes the Green’s function in free space. Taking the observation point 
r  inside the ( , )i j -th segment of ,V the coupled integral equations for the equivalent polarization 
currents 1 1( , , )

e
ij x y zJ and 1 1( , , )

h
ij x y zJ .are derived [2]. We define the unknown spectral amplitudes 

( )

, ( )
e h

ij pq zF  of the polarization currents in the ( , )i j -th segment as follows: 
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where 
1 1 1, 2 /x p x xk k p Lπ= + , 

1 1 1, 2 /y q y yk k q Lπ= + , 
1

sin sin ,xk k θ ϕ= − , and 
1

sin sin( )yk k θ ϕ β= + � . 
Using the Floquet theorem and the Fourier integral representation of the Green’s function, the 
integral equations are transformed into a set of coupled differential equations for the unknown 
integral functionals ( )

, ( )e h
ij pq

zI  as follows [3]: 
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Fig. 1. A doubly periodic magneto-dielectric 
layer of thickness h  illuminated by an 
electromagnetic plane wave.  
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where 
2 2 2 2

, /z pq pqz κ∇ = ∂ ∂ + . The general solutions to the coupled differential equations (7) and (8) 
are given as a sum of the particular solutions and the solutions to the corresponding homogeneous 
differential equations. The particular solutions are directly related to the excitation by the incident 
plane wave of (0, 0) - th spatial harmonic. The unknown constants contained in the homogeneous 
solutions are determined by the condition that the perturbed electric and magnetic fields inside the 
grating layer should vanish in the absence of the initial excitation ( 0 0 0= =E H ). The spectral 
amplitudes 

( )

, ( )e h

ij pq zF  of the polarization currents are calculated through the relation: 
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Using the results in Eqs.(2) and (3), the reflected electric field in the region 0z <  and the transmitted 
electric field in the region z h>  can be obtained [3] in terms of the spatial harmonics 

( )
e p pq pqi x y zξ γ κ+ ∓

 
as the basis. For a multilatered doubly periodic structure, we can apply the same algorithm as 
described above. For a Q-layered system, we have Q sets of coupled differential equations for the 
integral functionals ( )

, ( ) ( 1, 2, , )e h
s pq

z s Q=I �  defined for each layer in the same form as Eqs.(7) 
and (8). The equations are solved under the condition that the perturbed electric and magnetic fields 
inside each of Q layers should vanish separately in the absence of the initial excitation. 
 
3. Numerical Examples and Discussions 

 

We have developed a computer program based on the integral functional method for analyzing 
various kinds of three-dimensional gratings. The accuracy of the calculated diffraction efficiencies 
depends on the truncation size N of the double spatial harmonics in the field expansions. We have 
confirmed that the energy conservation law for the lossless periodic layer is usually satisfied with the 
accuracy of 

8
10

−
. The desktop CPU run-time on the 1800 MHz AMD (3000+) with 1 Gb RAM was 

approximately 7.5 minutes per one frequency point when
2

(2 1) 625N + = which was the maximum in 
our numerical test, and 2 seconds when 

2
(2 1) 121N + = . We have used the method to analyze the 

scattering of electromagnetic plane waves by a two layered gratings consisting of crossed rectangular 
dielectric rods as shown in Fig. 2. The lower 
grating consists of the rods with thickness 1,h  
width 1,w and relative permittivity 1 ,rε which are 
parallel to 1y - axis and periodically spaced with a 
distance 1 ( )xL L=  along the x-axis. The upper 
grating consists of the rods with thickness 2 ,h  
width 2 ,w and relative permittivity 2 ,rε which are 
parallel to x-axis and periodically spaced with a 
distance 1 ( / sin )yL L β= � along the 1y - axis. The 
crossing angle between two gratings is denoted by 

( 90 ).β β= °− � The transmission coefficient 00 yT   

1( )x x  

1y  

y  z  

1xL  

�ββββ  

1yL  

Fig. 2. Two layered crossed gratings formed 
by rectangular dielectric rods. 



of the zero-th order diffraction into the y-polarized wave for the normal incidence of x-polarized wave 
on the two layered crossed grating is plotted as functions of the normalized frequency, where 

1 2 1 20.5 , 0.5 ,h h L w w w L= = = = = 1 2 5.0,r rε ε ε= = = = = 0 ,θ ϕ ° and four different crossing 
angles β  are considered. The truncation number of spatial harmonics is 

2
(2 1) 361N + =  It is 

known that if 90 ,β = °  the reflected and transmitted waves are always polarized in the x- direction 
and 00 0yT =  for the normal incidence of x-polarized wave. Figure 3 shows that if the crossing angle 
changes from 90 ,β = °  there appears a significant transmission into the cross-polarized component 
even for the normal incidence. This feature is useful for designing a polarization converter based on 
the layered crossed-gratings. 
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Fig. 3. Transmission coefficient 00 yT  of the zero-th order diffraction into the y-polarized 
wave for the normal incidence of x-polarized wave on the two layered crossed grating as 
shown in Fig. 2 

(a) β=15°  (b) β=45°  

(c) β=75°  (d) β=85°  


