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Abstract 
A new method is introduced to frequency domain analyze arbitrary Longitudinally 

Inhomogeneous Waveguides (LIWs), in this paper. The LIWs are subdivided into several short linear 
sections instead of uniform ones. The chain parameter matrix of linear sections is obtained by 
expressing the electric and magnetic fields in power series expansion. This method is applicable to all 
arbitrary LIWs. The accuracy of the proposed method is verified using a comprehensive example. 
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1. Introduction 

Longitudinally Inhomogeneous Waveguides (LIWs) can be used in microwaves as phase 
changers, matching transformers and filters [1-3], especially for high power applications. The 
differential equations describing LIWs have non-constant coefficients and so except for a few special 
cases no analytical solution exists for them. There are some methods to analyze the LIWs such as 
finite difference [4], Taylor’s series expansion [5], Fourier series expansion [6], the method of 
Moments [7] and the equivalent sources [8]. Of course, the conventional and most straightforward 
method is subdividing LIWs into many short uniform sections [9]. In this paper, the conventional 
method is modified by subdividing LIWs into many short linear sections instead of uniform ones. In 
the proposed method, the permittivity function of LIWs is assumed to vary linearly between two ends 
of the short sections. Also, the distribution of the electric and magnetic fields along the LIWs are 
expanded in power series and their unknown coefficients are related to each other by some recursive 
relations. This method is applicable to all arbitrary LIWs. The accuracy of the proposed method is 
studied using a comprehensive example. 
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Figure 1: A typical LIW 

2. The Equations of LIWs 
Fig. 1 shows a typical LIW with dimensions a and b, filled by an inhomogeneous lossy 

dielectric with complex electric permittivity εr(z) and length d. It is assumed that a TE10 mode with 
electric filed strength Ei propagates towards the positive z direction. The differential equations 
describing LIWs are given by 
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where fc is the cutoff frequency of the hollow waveguide. Furthermore, the terminal conditions for 
LIWs are as follows 
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is the waveguide impedance, in which 
000 /εμη =  is the wave impedance of the free space. 

3. Linear Approximation 
The analysis of LIWs using linear approximation is introduced, in this section. It is assumed that 

the electric permittivity of LIWs could be expressed by a linear approximation as follows 
)/()/))(0()(()0()( 10 dzPPdzdz rrrr +=−+≅ εεεε       (6) 

Also, we can consider the electric and magnetic fields in power series as follows 
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in which the coefficients En and Hn are unknown coefficients. Using (6)-(8) in (1)-(2), the following 
relations are obtained. 
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where 
00 ωμjZ =            (11) 
( )2

000 )/( ffPjY c−= ωε           (12) 

101 PjY ωε=            (13) 
Equating the coefficients of the same power terms in two sides of (9)-(10), gives us the 

following recursive relations for n = 0, 1, 2, … 
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Of course, all unknown coefficients can be related to two coefficients E0 and H0. For example, 
some of the coefficients are obtained as follows 
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Finally, we can find the chain parameter matrix of LIWs as follows 
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Substituting the obtained coefficients En and Hn in (24) and after some mathematical 
manipulations, one can obtain the chain parameter matrix of LIWs as follows 
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is the chain parameter matrix of uniform waveguides assuming εr(z) = P0 [9]. Also, the matrix ΔΦ in 
(26) can be written as follows, ignoring the terms with power greater than four for d. 
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We expect that the added matrix ΔΦ in (25) can modify the conventional method of analysis of 
LIWs. To analyze LIWs, we can subdivide them into K linear sections whose chain parameter matrix 
can be expressed using (25)-(27) but substituting Δz = d/K instead of d. The chain parameter matrix 
corresponding to the terminals of LIWs can be written as the multiplication of the chain parameter 
matrices of all sections. Then, one can obtain the electric and magnetic fields at two ends of each 
section using the chain parameter matrix of terminals and the boundary conditions (3)-(4). It is worth 
to mention that we can also determine the electric and magnetic fields at any point located between 
two ends of each section using the relations (7)-(8) and (14)-(15) after knowing the electric and 
magnetic fields at two ends of all sections. Moreover, the elements of the chain parameter matrix can 
be used to find the S parameters as follows 
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4. Verifying the Modification 
In this section, we verify the modifications obtained from using linear sections instead of 

uniform ones in the analysis of LIWs. Consider a WRG-90 waveguide (a = 0.9 in and b = 0.4 in) filled 
by an exponential dielectric with the following electric permittivity function 

)/exp()( 0 dkzz rr εε =           (31) 
Now, assume that εr0 = 1−j0, d = 2 cm and k = 1. A TE10 mode wave with frequency f = 10 GHz 

and the electric field strength Ei = 1.0 V/m propagates in the assumed LIW. Figs. 2-3, compare the 
amplitude and phase of the electric field obtained from the exact solution [7] and from the introduced 
and the conventional methods with K = 10 linear and uniform sections. One sees an excellent 
agreement between the results obtained from the introduced method with the exact ones. Also, Figs. 4-
5 show the relative error corresponding to the scattering parameters S11 and S21 for the methods of 
cascading K uniform and linear sections versus K. It is seen that the accuracy of cascading linear 
sections is more than that of cascading uniform sections. Furthermore, if one considers more terms in 
(27) the accuracy of the cascading linear sections will be increased, certainly. According to this 
example, one may be satisfied about the modification of the introduced method. Also, it is obvious 
that the introduce method is applicable to arbitrary LIWs. 



 

5. Conclusion 
A new method was introduced to frequency domain analyze arbitrary Longitudinally 

Inhomogeneous Waveguides (LIWs). The LIWs are subdivided into several short linear sections 
instead of uniform ones. The chain parameter matrix of linear sections is obtained by expressing the 
electric and magnetic fields in power series expansion. The validity of the proposed method was 
verified using a comprehensive example. It was seen that the accuracy of cascading linear sections is 
more than that of cascading uniform sections. The introduced method can be extended for LIWs, 
whose magnetic permeability is inhomogeneous solely or along with their electric permittivity. 
 

  
Figure 2. The amplitude of the electric field distribution     Figure 3. The phase of the electric field distribution 

 

  
Figure 4. The relative error of the obtained S11 parameter   Fig. 5. The relative error of the obtained S21 parameter 
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