BOR-SPR Antenna with a Stop Band

\# H. Nakano, M. Baiju, and J. Yamauchi
College of Engineering, Hosei University, Koganei, Tokyo, Japan 184-8584, hymat@hosei.ac.jp

1. Introduction

The input impedance of a conducting body of revolution (BOR) above a ground plane has a wideband frequency response. The lower edge of the operating frequency band of the BOR depends on the height of the BOR. Recently, we added a parasitic ring [1] to a BOR, whose height is extremely small (0.07 wavelength at lower band edge [2]), and found that this antenna, designated as the BOR-SPR (abbreviation for BOR with a shorted parasitic ring), has a 148% bandwidth for a VSWR $=2$ criterion.

This paper is a sequel to the research on the BOR-SPR found in [2] and presents a technique for generating a stop band in the frequency response of the VSWR [3]. Such a stop band is effective in reducing interference with nearby devices, or enhancing the isolation of transmitted signals from received signals [4].

The stop band in this paper is generated by adding a conducting line to each of the four pins that connect the parasitic ring to the ground plane. This conducting line (of length l_{L}) is located parallel to the pin, with spacing s_{L}. The analysis of this BOR-SPR is performed using the finite-difference time-domain method (FDTDM) [5]. The effects of the length 1_{L} and spacing s_{L} on the stop band are analyzed and the center frequency and width of the stop band are discussed. Note that the radiation pattern is also analyzed and discussed.

2. Configuration

Fig. 1 (a) shows the configuration of a conventional BOR-SPR antenna [2]. The antenna is composed of a conducting body of revolution, a parasitic ring, and a ground plane. The parasitic ring is shorted to the ground plane using four pins. The generating line of the BOR is specified with points $P\left(x_{P}, 0, z_{P}\right)$ and $Q\left(0,0, z_{Q}\right)$. The parasitic ring, for which the inner and outer diameters are $D_{i n}$, ring and $\mathrm{D}_{\text {out r ring, }}$, respectively, is located at height z_{p}. The ground plane has a diameter of D_{GP}. Fig. 1(b) shows a modified BOR-SPR, where a conducting L-line is added to each of the four pins. The L -line is specified by length l_{L} and spacing s_{L}.

3. Analysis and discussion

The antenna characteristics are calculated using the electric and magnetic fields (\mathbf{E} and \mathbf{H}) obtained using the FDTDM. The field components at symmetric points with respect to the $\mathrm{x}-\mathrm{z}$ plane in Fig. 1 have the following relationships: $E_{x}(x, y, z)=E_{x}(x,-y, z), E_{y}(x, y, z)=-E_{y}(x,-y, z), E_{z}(x$, $y, z)=E_{z}(x,-y, z), H_{x}(x, y, z)=-H_{x}(x,-y, z), H_{y}(x, y, z)=H_{y}(x,-y, z), H_{z}(x, y, z)=-H_{z}(x,-y, z)$. This means that the $\mathrm{x}-\mathrm{z}$ plane acts as a magnetic wall. Note that the $\mathrm{y}-\mathrm{z}$ plane also acts as a magnetic wall and hence the practical analysis space of the FDTDM can be reduced to one-fourth of the total analysis space.

Fig. 2 shows the VSWR frequency response for a spacing of $\mathrm{s}_{\mathrm{L}}=2 \Delta$ with length 1_{L} as a parameter, where $\Delta=\lambda_{7.2} / 100$ with $\lambda_{7.2}$ being the wavelength at a frequency of 7.2 GHz . The configuration parameters are chosen to be $\mathrm{P}\left(\mathrm{x}_{\mathrm{P}}, 0, \mathrm{z}_{\mathrm{P}}\right)=\mathrm{P}(8 \Delta, 0,36 \Delta)$ and $\mathrm{Q}\left(0,0, \mathrm{z}_{\mathrm{Q}}\right)=\mathrm{Q}(0,0,2 \Delta)$ for the BOR, $\left(D_{\text {in,ring, }}, D_{\text {out, ring, }}, Z_{P}\right)=(24 \Delta, 96 \Delta, 36 \Delta)$ for the parasitic ring, and $D_{G P}=328 \Delta$ for the ground plane. It is found that the L-line BOR-SPR has a stop band in the VSWR frequency response. The center frequency of the stop band is closely related to the length l_{L}; the center frequency corresponds to the frequency at which the L-line length is approximately one-quarter wavelength. Note that the conventional BOR-SPR without L-lines shows a wideband frequency response without a stop band, with the lower band edge at 1.8 GHz .

Next, we investigate the effect of the L-line spacing s_{L} on the VSWR. Fig. 3 shows the frequency response of the VSWR with spacing s_{L} as a parameter, where the L-line length 1_{L} is fixed $\left(l_{L}=32 \Delta\right)$. It is found that as the L-line spacing is decreased, the bandwidth for a VSWR $=20$ criterion decreases: 9.7% for $\mathrm{s}_{\mathrm{L}}=4 \Delta, 7.3 \%$ for $\mathrm{s}_{\mathrm{L}}=3 \Delta$, and 4.8% for $\mathrm{s}_{\mathrm{L}}=2 \Delta$. It is also noted that the L-line spacing slightly affects the stop band center frequency.

So far, we have discussed the effects of the L-lines on the bandwidth and center frequency of the stop band. Finally, we investigate the radiation fields at frequencies outside the stop band. Fig. 4 shows the radiation patterns at 3.1 GHz and 10.6 GHz , where the L -line has parameters of $\left(\mathrm{l}_{\mathrm{L}}, \mathrm{s}_{\mathrm{L}}\right)=$ $(32 \Delta, 2 \Delta)$. For comparison, the radiation patterns when no L-lines are present are also shown in Fig. 4. It is found that the L-lines do not noticeably affect the radiation pattern at frequencies outside the stop band. The maximum radiation is not in the horizontal direction (see the radiation pattern in the $\mathrm{x}-\mathrm{z}$ plane); the beam is tilted upward above the ground plane due to the finite-sized ground plane. The radiation in the $x-y$ plane is found to be almost omni-directional.

Fig. 1. BOR-SPR antenna. (a) Conventional BOR-SPR. (b) BOR-SPR with L-lines.

4. Conclusions

A BOR-SPR antenna is investigated for generating a stop band in the VSWR frequency response, where four conducting L-lines, each specified by length 1_{L} and spacing s_{L}, are added to the outer pins. The center frequency and width of the stop band are investigated. It is found that the length 1_{L} controls the center frequency and the spacing s_{L} can be used to control the stop-band width. It is also revealed that the radiation pattern at frequencies outside the stop band is very similar to that for the antenna structure where no L-lines are present, showing almost omni-directional radiation about the antenna axis.

Acknowledgements

We thank V. Shkawrytko and H. Mimaki for their assistance in the preparation of this paper.

References

[1] H. Iwaoka, J. Yamauchi, and H. Nakano, "A broadband patch antenna with a ring slot," Proc. of IEICE Society Conference, B-1-72, Sapporo, Japan, September 2005.
[2] H. Nakano, H. Iwaoka, K. Morishita, J. Yamauchi, "A wideband low-Profile antenna composed of a conducting body of revolution and a shorted parasitic ring," IEEE Trans. Antennas and Propagation, vol. 56, no. 4, pp. 1187-1192, April 2008.
[3] M. Baiju, S. Hattori, J. Yamauchi, and H. Nakano, "An elliptically shaped ring antenna with a stop band," Proc. of IEICE Society Conference, B-1-108. Ishikawa, Japan, September 2006.
[4] K. Bahadori, Y. R.-Samii, "A Miniaturized elliptic-card UWB antenna with WLAN band rejection for wireless communications," IEEE Trans. Antennas and Propagation, vol. 55, no. 11, pp. 3326-3332, Nov. 2007.
[5] K. S. Yee, 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagation, vol. AP-14, pp. 302-307, May 1966.

Fig. 2. VSWR of a BOR-SPR with L-lines, with length l_{L} as a parameter and $s_{L}=2 \Delta$.

Fig. 3. VSWR of a BOR-SPR with L-lines, with spacing s_{L} as a parameter and $\mathrm{l}_{\mathrm{L}}=32 \Delta$.
3.1 GHO

Fig. 4. Radiation patterns.

