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1. Introduction 
 

The FDTD method was developed over 40 years ago, and evolved by many researchers. The FDTD 
method has been recognized as a powerful tool because of its versatility. The drawback of the method is 
that there are phase velocity errors when the spatial division by cells is insufficient. To overcome this 
difficulty, many approaches have been proposed, for example, higher-order methods such as FDTD (2,4), 
the method of modifying the speed of light, etc. Recently, Cole proposed the nonstandard FDTD (NS-
FDTD) method [1,2]. Various extensions of the method have been carried out, and other similar methods 
have been developed by many researchers [3-9]. In this paper we review our research on the NS-FDTD 
method. 
 
2. NS-FDTD Method 
 

The NS-FDTD method is composed of two major procedures as shown in Fig. 1: a) making the 
numerical phase velocity isotropic. The numerical phase velocity cni has isotropic characteristics for any 
frequency compared to the numerical phase velocity cn of FDTD because the method utilizes the values at 
36 nodes in calculating the value at a single node, and b) increasing numerical phase velocity. The 
numerical phase velocity cnNS of the NS-FDTD method is increased to the physical phase velocity c0 by 
the nonstandard finite-difference (NS-FD) approach using correction functions of the form 

( )( ) 2sin 2Sα α αΔ = Δ . However, the NS-FD method is effective only at a single frequency; this makes the 
NS-FDTD method valid only at single frequency. Furthermore, only cubic cells were considered, and only 
the behavior of the electric field was described in [2]. The FDTD method can be recovered from the NS-
FDTD method by setting the parameters which are associated with the FD Laplacians for isotropy and 
correction functions to zero. 
 
3. Our NS-FDTD Research 

 
We have extended the nonstandard FDTD method and applied the method to various problems [10]. Fig. 

2 shows the diagram of our research on NS-FDTD method. 
The NS-FDTD method is basically limited to a monochromatic frequency. Therefore, the method can 

be applied to the single frequency case. We have developed new methods, which allow a wideband 
analysis with NS-FDTD. In the new methods, a correction function is not used, but only the isotropic 
characteristic of the method is used.  

In the new method, we can handle a pulse wave input directly. The effect of the correction function is 
transformed into time domain equation. So, the wideband simulation is possible although the method is 
limited to the lossless case. 

There are two ways, a) formulation in the space domain, b) formulation in the time domain. 



4. Applications 
 

The method has been applied to various problems such as large-scale cavity and photonics, and 
effectiveness was shown. In the presentation, some results are demonstrated. First, we demonstrate the 
result for large-scale cavity analysis. Fig.3 shows a three-dimensional cavity model coated with a thin 
RAM.  In the analysis, the concept of complex surface impedance boundary condition (CSIBC) was used 
to model thin RAM. Fig.4 shows comparison of monostatic RCS.  The effectiveness of the method is 
shown. Next, we demonstrate the application of newly proposed wideband NS-FDTD (WNS-FDTD) 
method. Fig.5 shows the simulation results of a Gaussian pulse propagation.  In the figure, it is shown that 
a pulse wave propagates without distortion. The figure shows the effectiveness of the WNS-FDTD  
method. 
 
5. Conclusions 
 

In this paper, we have briefly introduced our research on the NS-FDTD method. Now, we are 
investigating the development of wideband NS-FDTD method to treat pulse waves using the formulation 
in the time domain by using the similar way to treat the dispersive materials in the usual FDTD method. 
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Figure 1: Schematic view of the NS-FDTD method. 
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Figure 2: Diagram of our research on the NS-FDTD method. 
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Figure 3: Three-dimensional cavity model coated with a thin RAM, AN-73. The cavity wall is a perfect 
electric conductor with infinitesimal thickness. 
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Figure 4: Comparison of monostatic RCS of the cavity with thin RAM shown in Fig.3 derived by various 
methods. λΔ =

FDTD / 60
 for the CSIBC. The reference curve is the converged result by the standard 

FDTD method with λΔ = .
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               (a) incident wave                             (b) reflected wave                         (c) transmitted wave 
 

/ 500xFigure 5: Simulation of a Gaussian pulse striking a dielectric material with = . Source at Δε = −
0x = 0.05 mΔ = 0 / 0.5c t

, 
dielectric boundary at , , Δ = . Δ
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