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    Abstract － The modified Yule-Walker 
scheme is employed to define arbitrary 
transmission scattering parameter of a 
multiple-level band-pass filter in the 
discrete-time domain. Equal-length microstrips 
including single- and double-section stubs are 
used to implement the multiple-level band-pass 
filter. Experimental results are presented to 
illustrate the validity of this design method. 
 
Index Terms － Yule-Walker scheme, 

multiple-level filter, Z domain. 
 
 

I.  INTRODUCTION 
Microwave filters [1-5] are two-port 

networks used to allow transmission of signals 
over the pass-band and reject all signals over the 
stop-band. Typical frequency-domain filters 
include low-pass, high-pass, band-pass and 
band-stop filters. Conventional methods to design 
and implement microwave filters begin with 
lumped-element prototypes. Richard’s 
transformation [2] and Kuroda’s identities [3], are 

then used  to transform lumped-element values to 
the corresponding transmission-line circuits. 
Butterworth, Chebyshev and elliptical filters are 
three popular prototypes used in filter design. 
Each of three has its distinct characteristic that 
meets specific applications. The motivation of this 
work is to explore the design of filter having 
arbitrary frequency response. In other words, the 
goal is to develop a filter design method for a 
given arbitrary frequency-domain response.   

The modified Yule-Walker equation [6-7] is 
commonly used in statistics for estimating the 
time domain parameters of an autoregressive 
process. But there is still no filter design using 
modified Yule-Walker equation. The modified 
Yule-Walker scheme defines explicitly arbitrary 
responses of filters. In this letter, we limit our 
focus on the multiple-level band-pass filter. We 
begin with a multiple-level band-pass filter having 
arbitrary frequency-domain response. The 
Yule-Walker scheme converts the 
frequency-domain response into the Z-domain 
response [8]. To implement a filter having transfer 
function in the Z domain, an equal-length  



 
Fig 1: Defined magnitude response of two-level band-pass 

filter and its Yule-Walker approximation. 
 

transmission-line configuration is proposed to 
emulate the multiple-level filter. Both numerical 
and measured results are presented to illustrate the 
validity of this design method.  
 

II.  TWO-LEVEL BAND-PASS FILTER    
USING MODIFIED YULE-WALKER 

EQUATION 
Fig. 1 depicts a two-level band-pass filter with 

amplitude responses as m = [0, 0, 1, 1, 0.317, 
0.317, 0, 0] at the normalized frequencies f = [0, 
0.33, 0.375, 0.41, 0.43, 0.56, 0.57, 1]. As shown in 
Fig.1, two pass-bands occur at 0.375-0.41 and 
0.43-0.56. In particular, two pass-bands represent 
a difference of 10dB in amplitude response. Upon 
using the command statement [8], 

 
            [b,a] = yulewalk (f,m); 
 
we obtain the system function of the band-pass 
filter in the Z domain, which is as follows 
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Table I Chain-Scattering-Parameter Matrices of Basic 
Transmission lines 

 

 
where {bj , 0≦bj≦9} = {0.0269, -0.0097, 0.0207, 
-0.0020, 0.0069, 0.0185, -0.0105, 0.0215, -0.0152, 
0.0015 } and {ai , 0≦ai≦9} = {1.0000, -1.2446, 
3.5043, -2.9885, 4.4439, -2.5480, 2.4624, -0.8013, 
0.4962, -0.0248 }. Fig. 1 also shows the amplitude 
response of equation (1), which deviates slightly 
from the original amplitude response. We may 
select higher-order values of (i,j) to obtain F(z) so 
that F(z) will fit better the original amplitude 
response. However, higher-order values of (i,j) 
will lead to a more complex circuit when F(z) is 
implemented with transmission lines. Equation (1) 
represents the system function of arbitrary 
two-level band-pass filter. Notice that the 
amplitude response |F(z)|  in Fig. 1 is symmetric 
with respect to Ω = π with Ω  being the 

normalized frequency. |F(z)| is also a periodic 
function with a period of 2π. 
 

III.  EQUAL-LENGTH TRANSMISSION 
LINES IN THE Z DOAMIN 

Table I [5] shows the chain-scattering 
parameters matrices of basic transmission lines, 



namely, series line, shunt-open stub, shunt-short 
stub, and shunt-open two-section stub. We assume 
that each of finite sections has the same electric 
length with βi li = ωτ, where ω is the angular 
frequency and τ is the propagation delay time of 
each finite line. The discrete-time domain 
response of transmission-line configuration is 
obtained by setting z-1 = exp (-j2βi li), where Zi, βi, 
and li (i=1, 2, a, b, c) are the characteristic 
impedance, propagation constant, and physical 
length, respectively. Notice that Z0 is the reference 
characteristic impedance, which is assumed to be 
50Ω.  

The chain scattering matrix of a cascaded 
network consisting of series-shunt transmission 
lines is the sequential multiplication of the chain 
scattering matrix of each fundamental element. It 
is given by 

11 12 11 12

121 22 21 22

,
i iP

i i
inetwork

T T T T
T T T T=

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
∏      (2) 

where P is number of the fundamental elements, 
and T11

i, T12
i ,T21

i, T22
i are the matrix elements 

representing the i-th element. If a network consists 
of K two-section open-circuited stubs, L series 
sections, M short stubs, and N open stubs, the 
transfer function T11,network(z) of the overall 

network is given as follows in equation (3), 
where all ai are real and are determined by the 
characteristic impedances of all series and shunted 
components. When the output port of the cascade 
network is properly terminated, the transfer 
function T(z) of such a network becomes equation 
(4), where z-L/2 represents time delay of series lines 
and  
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is a function of the characteristic impedances of 
all components involved. Both system function 
F(z) of two-level band-pass filter and transfer 
function T(z) of transmission-line network are 
expressed in terms of Z parameters. In order to 
implement a two-level band-pass filter with a 
transmission–line network, we set 
 

( ) ( ).F z T z=             (6) 
 
Notice that Ai in T(z) is a function of characteristic 
impedances of transmission lines. The task is, 
therefore, to adjust characteristic impedances of 
transmission lines so that T(z) is as close to F(z) as  
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Fig 2: Pole-zero locations of band-pass filter in the z plane. 

 
possible in the sense of least square error [5]. 

 
IV.  IMPLEMENTATION OF FILTER 

Fig. 2 shows pole-zero locations of equation (1) in 
the complex z plane. There are four zeros not 
located on the unit circle, which are z = 0.53531, 
0.12039 and 0.087959±0.93833i. We rearrange 
equation (1) and the system function of the 
two-level filter is as follows in equation (7). 
Notice that all zeros located on the unit circle can 
be realized with shunt stubs [4]. On the other hand, 
zeros not located on the unit circle cannot be 
implemented with simple transmission lines. In 
order to remove these zeros from the numerator, 
we divide both numerator and denominator of 
equation (7) with the factor 
[(1-0.53531z-1)×(1-0.12039z-1) ×(1-0.175918z-1+ 
 

 
Fig 3: Pole-zero locations after the removal of zeros not 

located on the unit circle. 
 
0.8882z-2)]. In addition, to introduce a zero at DC, 
we multiply both numerator and denominator of 
equation (7) with the factor (1-z-1). After the 
algebraic manipulation, we obtain the system 
function of two-level band-pass filter as follows 
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where {bj , 0≦bj≦6} = {0.0269, -0.0142, -0.0101, 
0.0000, 0.0098, 0.0145, -0.0268} and {ai , 

0≦ai≦14} = {1.0000, -1.4130, 2.5059, -2.3061, 
1.9421, -1.3451, 0.3049, -0.2884, -0.1778, -0.1028, 
-0.0595, -0.0287, -0.0112, -0.0081, -0.0084}. 
Fig.3 depicts the pole-zero locations of equation 
(8) after the removal of zeros not located on the  
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Fig. 4: Amplitude responses of F(z) and T(z) for the 

two-level filter. 
 

 
Fig 5: Configuration of  two-level band-pass filter. 

 
unit circle. Notice that the amplitude response of 
equation (8) is the same as that of equation (7). 
Fig. 4 shows the amplitude response of equation 
(8) when the normalizing frequencies is 10 GHz. 
The modified system function of equation (8) is 
employed to implement the two-level band-pass 
filter by employing equal-length transmission 
lines. Fig. 5 shows the configuration of 
transmission-line network used to synthesize the 
filter, of which K = 2, L = 15, M = 3, and N = 3. 
There are two two-section open stubs, namely, 
(Z2(1), Z1(1)) and (Z2(2), Z1(2)), which are used to 
implement transmission zeros at 2.43 GHz and 6.6 
GHz, respectively [4]. Three one-section short 
stubs and three one-section open stubs are used to 
produce transmission zeros at DC and 10 GHz, 
respectively.  
     Upon using the requirement set by equation 
(6) and optimization process [5], we obtain the 
characteristic impedances of transmission lines. 
The characteristic impedances of short stubs, from 
left side to right side in Fig. 5, are 160, 27.282,  

 

Fig 6: Photograph of two-level band-pass filter. 

 

 

(a) 

 
(b) 

Fig. 7: (a) |F(z)| and measured S21 and (b) measured  
group delay of the band-pass filter in Fig. 6. 

 
and 160 Ω. Three open stubs have impedance 
profile, from left side to right side, as 160, 160, 
and 139.22 Ω.  The characteristic impedances of 
two two-section stubs are Z2(1)=160 Ω, 
Z1(1)=24.64 Ω, Z2(2)=42.06 Ω, and Z1(2)=115.54 



Ω. In addition, the characteristic impedances of 
fifteen series lines are 74.83, 125.68, 142.03, 
110.1, 109.46, 50.13, 22.21, 97.59, 70.49, 160, 
38.76, 144.26, 70.55, 43.40, and 35.90 Ω. Fig. 4 
shows the simulation result of frequency response 
T(z) when the normalizing frequency is 10 GHz, 
i.e., each finite section of transmission line has a 
electrical length of 90o at the normalizing 
frequency of 10 GHz. Fig. 6 shows the photograph 
of two-level band-pass filter, which is built on the 
UL2000 substrate with thickness of 30 mil (0.762 
mm), relative dielectric constant of 2.45, and loss 
tangent of 0.0025. The total length of the filter 
excluding reference lines on both sizes is 85.10 
mm. Fig. 7(a) shows both measured result and F(z) 
of the band-pass filter. The insertion losses for 
band 3.62 GHz- 4.17 GHz and band 4.64 
GHz-5.34 GHz are 0.8 dB and 10 dB, respectively.  
The measured result deviates slightly from 
postulated two-level filter F(z). Fig. 7(b) depicts 
the group delay of two-level filter. The group 
delay is about 1.2 ns in the transmission band.  
 

V.  CONCLUSION 
    A method to design the microwave filter with 
multiple-level response was proposed in this letter. 
The modified Yule-Walker scheme was employed 
to define arbitrary transmission scattering 
parameter of a multi-level band-pass filter in the 
discrete-time domain. A two-level band-pass filter 
with 10dB difference in amplitude response was 
implemented to illustrate the validity of this 
design method.   
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