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Abstract: In this paper we are interesting about a simple implementation of the Yee finite-difference in time 
domain (FDTD) to modelise electromagnetic differentiated Gaussian and sinus Gaussian pulses. The source 
is emitting from free space (in two dimensions) and hits a slab which formed by a lossy multilayer media. By 
using the MATLAB codes, stability criterion and the perfect matched layer (PML). Our objective is to asses 
the detection of buried objects by using the ground penetrating radar (GPR). The code is well commented, 
elatively easy to understand and can easily modified for user’s specific purpose. r 
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I- INTRODUCTION  
The GPR is a non-destructive technique used for 
high-resolution imaging of the shallow 
subsurface. Its performance is in a growing 
interest in the propagation of transient 
electromagnetic wave through the upper regions 
of earth’s surface for detection and location of 
buried artefacts and structures within. The 
propagation of waves is resumed in figure 1. 

 

The FDTD method has prevailed in the 
computational electromagnetic area as an 
accurate numerical technique for the direct 
integration of Maxwell’s equations. Its evolution 
has ensured from several technological 
developments, resulting in the emergence of 
various algorithms that extend the method’s 
implementation to various modern applications. 
Representative examples are the simulation of 
light propagation in optical devices, soil 
modeling in GPR problems, and the study of 
potential effects of human tissue exposure to 
electromagnetic radiation [2], [3]. Because of 
the improved of computational resources of the 
1990s made FDTD modeling of GPR feasible 
[4], [5]. Although FDTD simulations provide 
additional insight into antenna radiation 
mechanisms by visualizing the propagation of 
electric and magnetic fields as a function of time 
and space as the computations proceed [7]-[8] 
[9].  

  
We are interesting in this paper in modeling the 
GPR for detecting objects in attenuating 
multilayer soil. Our work consist of emitting a 
differentiated Gaussian-pulse or a sinus 
Gaussian-pulse near the middle of a gird 
composed of Yee cells divided on two parts. The 
first one represents the free space and the other 
is representing the soil which is formed by three 
layers. Each one has a proper electric 
permittivity and conductivity as showed in 
figure 2. These parameters are taken to be near 
soil reality. A numerical modeling of complete 

GPR systems can be done by using the FDTD 
algorithms [1].  

Figure 1: Waves in GPR unit 

 
We choose MATLAB as our coding language 
because of its comprehensive library of graphics 
routines. It is relatively straight forward to 
produce animations using MATLAB; this is 
often critical to the understanding of a working 
FDTD algorithm. Due to the large amount of 
book-keeping required in any full 3D-FDTD 
code, it is common to reduce the dimensionality 
down to 2D for pedagogical purposes. Most of 
the equations in this report can be found in other 
texts; however, we have listed them here for the 
reason of continuity [10]. A working FDTD 
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code must propagate waves properly, absorb 
waves at the edges of the modeling grid by 
implementing the perfectly matched layer 
(PML) absorbing boundaries, and calculate 
useful modelling results. This work addresses all 
of the above in a step by step process and has 
he following outline: 
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t 
Model: To simplify the problem, the antenna 
emits a differential Gaussian wave near the soil 
which is presented as a stratified medium with 
different electrical permittivities and 
conductivities. And this model is presented in 
figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
I I- THEORY 
A - Governing equations 
In deriving 2-D FDTD formulation, we choose 
between one of two groups of the three vectors 
ach[11]: e 

1- The transverse magnetic (TM) mode, 
which is composed of: zE , xH , and 

yH or 
2- The transverse electric (TE) mode, 

which is composed of: xE , yE , and 

zH . 
We will work with the TM mode wave 
propagation. Expanding the following equations  
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Where: The dielectric permittivity and the 
electrical conductivity are respectively 
represented as:  

εεε 0= , rσσσ 0= : are respectively the 
dielectric permittivity and the electrical 
conductivity. The magnetic permeability is 
represented as: rμμμ 0= . 
 
B- FDTD appoximations  
We used a differential Gaussian-pulse and sinus 
Gaussian-pulse.  
The gird was composed of Yee cells (Yee, 
1966), after substituting the appropriate finite- 
difference expressions into Eqs. (3) to (5) and 
solving for the updated electric and magnetic 
field components, we arrived to write the above 
three equations as: 
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Figure 2: Geometry 
 of subsurface model 
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In Eqs. (6)-(8), 0ε and 0μ  differ by several 
orders of magnitude,  and  will differ 
by several orders of magnitude. Numerical error 
is minimised by making the following change of 
ariables as: 

zE xH yH
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C - Stability criterion 

Working in discretization domain, dispersion of 
non physical signals appears in the lattice. This 
dispersion changes with frequency, the direction 
of propagation and the spatial discretization. To 
reduce its effect to acceptable values of 
precision the spatial discretization must be 
enough to sample the wave length of signals 
with an enough point number. This error fall 
about 0.3% when the spatial discretization  is 

n.20/0λ , however it is  1.2 % in all directions 
when it is about n.10/0λ  (where 0λ  is the 
wave length of the wave and  n index of  
propagation medium).In our work we have taken  

30/0λ  in our Matlab programming  of the 
FDTD [12] . 
 
The FDTD is restricted by the gird size, because 
over one increment in the space gird, the 
electromagnetic field can not change. This 
means that in order to obtain meaningful result, 
it becomes necessary for the linear dimensions 

of the gird to be only a fraction of the 
wavelength. This requirement puts a restriction 
upon the time step ( tΔ ) for the chosen gird 
dimensions ( yx Δ, ). If ε andΔ  μ  are allowed 
to be constant, this restriction, known as the 
stability criterion, can be expressed as, 
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Where is the maximum velocity through a 
given medium and this velocity can be defined 
as rcc ε/max =

smc /10997.2 8×= r

. 

Where and ε  is the 
relative permittivity of the medium 
In our simulation we chosen   to satisfy the 
(14) equation taking from the works of  Susan 
Hagness implementation in 2-D with Matlab 
odes[13]. 

tΔ
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c 
Making use of equation (13) in equations (10-
11-12), we obtain  
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In this case we have assumed that: = =Δ  
 
I II- MATLAB IMPLEMENTATION 
The 2-D, TM-mode, finite-difference 
formulation will be presented, we will use 
matrices to store all field components and 
electrical properties 

= dydx = 3.0e-3 m 



rε =[1 10 4 7 12 ] 
σ =[0 10 5e-4 1e-2 0.4 ] 

rμ =[1 1 1 1 1 ] 
The cylinder has rε =10 and σ =10  
 
For the differential Gaussian pulse 

12-26.53e0.7 ×=tw and  twt ×= 40

source =  
( )( ) ( )( )( )2

00 /1exp/2 twtTtwtT −−−−  
For the sinus Gaussian pulse 

GHzfreq 5.1=  
freqomega .2π=  

120.160 −= ertau  
dtrtautau /=  

taudelay .3=  
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source=
( )( ) ( )( )( )22 /exp..sin taudelayndtdelaynomega −−−

For the two sources the frequency of the 
excitation is 1.5.109 Hz. 
For the thickness in of each medium is15 cm 
and the diameter of cylinder is 6 cm. 
For the first the electric permittivity is  rε =4, 
the second is 7 and the third is 12 however for 
the electric conductivity; the first σ =5e-4, the 
econd is 1e-2 and the third is 0.4 s 

 
Figure 4: Sinus Gaussian pulse 

 

 
Figure 5: Differentiated Gaussian pulse 

 

 
Figure 6: Sinus Gaussian pulse  

 
Figure 7: Differentiated Gaussian Pulse  

I V-CONCUSION 
For each source the cylinder appears clearly   in 
spite of attenuation due the parameters of the 
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soil and the results of simulation show that the 
two sources are adapted for this stratified 
medium and are comparable. We can notice that 
the Differentiated Gaussian pulse has high 
velocity than the sinus Gaussian one in free 
space; this is showed in figures (4) and (5); 
because at 84ns the first one hits the slab before 
he other.  t 
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