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Abstract—In this paper, we propose a hysteresis divided
optimization algorithm (HDO) which can be classified into
one of meta-heuristic optimization algorithms. The search-
ing area is divided into some region which corresponds to
the number of particles. The algorithm consists with plural
particles which search the optimal value of the given eval-
uation function. Each particle is placed in each region, and
the particle searches the optimum value within the corre-
sponding region. The size of each region is determined by
the adjacent best informations. Also, each search region is
discretized in order to reduce the computational amount of
search process. The moving direction of the particle is de-
termined by the output of the bipolar hysteresis. Namely,
the particles continue to explore in each region. By us-
ing these properties of the HDO, we apply the HDO to
the multi-solution problems (MSP). We confirm the search
performance of the HDO by using well-known benchmark
function of MSP. Based on the numerical simulation re-
sults, the HDO exhibits the good performance.

1. Introduction

Optimization problems are very important problems for
engineering fields. Therefore, many researchers have in-
vestigated the solving algorithm of the optimization prob-
lems. In such optimization problems, there is a case that the
evaluation function has multiple feasible solutions. Such
problem is called Multi-Solution Problems (MSP) [1],[2].
The MSP is inevitable in practical/potential applications,
therefore, several interesting methods have been studied.
Especially, some researchers proposed the methods which
applied the particle swarm optimization algorithms to the
MSP [2]-[7]. The PSO is an excellent search algorithm
for optimization problems, however, it is difficult to solve
the MSP. The reason why it is difficult is that the PSO
has a redundancy search process. Namely, plural particles
searched the same area. Thus the particles might find the
same solutions.

To overcome such problems, we propose a novel solving
algorithm named Hysteresis Divided Optimization (HDO)
algorithm which is based on the improved PSO. The search
space is divided into some region by the HDO. The parti-
cles search the feasible solution in each region with par-
allel. In order to reduce the computational amount, the
search space is discretized. Thus, the proposed system
can be regarded as a discrete system. The interval of the

search region is controlled by the thresholds of the bipolar
hysteresis. In addition, the proposed system changes the
thresholds which are divided each region. By changing the
thresholds adaptively, the system improves searching abil-
ity effectively. We focus on a deterministic system to ana-
lyze the dynamics theoretically. That system does not con-
tain any stochastic factors. By using a benchmark function
of the MSP, we investigate the capability of our proposed
algorithm.

2. Hysteresis divided optimization

In this section, we propose a hysteresis divided optimiza-
tion algorithm. The hysteresis divided optimization algo-
rithm is one of meta-heuristic optimization algorithm. This
algorithm does not require the derivative information of the
evaluation function. The algorithm consists with plural par-
ticles which search the optimal value of the given evalua-
tion function. In our hysteresis divided optimization, the
searching area is divided into some region which corre-
sponds to the number of particles. Therefore, each parti-
cle is placed in each region, and the particle searches the
optimum value within the corresponding region.

The dynamics of the HDO is described by

xi(t + 1) = xi(t) + ΔiH(xi(t),Thmini ,Thmaxi )

H(X) =

{
+1 for xi(t) ≥ Thmini

−1 for xi(t) ≤ Thmaxi

(1)

where xi denotes the location vector of the i-th particle.
Thmini and Thmaxi denote the threshold vector of the i-th
particle. The search region of each particle is defined by
the threshold vector. H(X) is a bipolar hysteresis. When
H(X) = −1, H(X) is switched from -1 to +1 if the X reaches
the positive threshold Thmaxi . When H(X) = +1, H(X) is
switched fron +1 to -1 if the X reaches the negative thresh-
old Thmini .

In order to reduce the computational amount of search
process, we discretize each region which is defined by
Thmaxi and Thmini . At first, we define the number of dvision
of each region. LP denotes the number of lattice points of
each region. Therefore, we can define an interval of the
lattice points as

Δi =
Thmaxi − Thmini

LP
(2)

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 162 -



Based on this interval, the searching point of the parti-
cles is changed on every iterations as Eq. 1. The moving
direction of the particle is determined by the output of the
bipolar hysteresis. Namely, the particles continue to ex-
plore between Thmini and Thmaxi .

The number of lattice points LP parameter plays an im-
portant role for searching. The aspect of the trajectory of
each particle is depended on the number of lattice points
in each dimension. Figure 1(a) and (b) illustrate the trajec-
tory when the number of lattice points in each dimension
is changed. Since we consider the MSP in 2-dimensional
objective functions, the system has two kinds of number
of lattice points; LPx and LPy. LPx is the number of lat-
tice points of the first dimension, and LPy is the number of
lattice points of the second dimension.

)a( )b(

Figure 1: (a)The trajectory of the case where each num-
ber of lattice points is the different.(LPx = 6, LPy = 7)
(b)The trajectory of the case where each the number of lat-
tice points is the same.(LPx = 6, LPy = 6)

Table 1: The number of trajectories of the 2-dimensional
HDO for each combination of the lattice points

LPx

6 7 8 9 10

LPy

6 6 2 2 2 2
7 2 7 2 3 4
8 2 2 8 2 2
9 2 3 2 9 2

10 2 4 2 2 10

Figure 1(a) shows the case where each the number of
lattice points is the different, namely LPx = 6 and LPy =

7. In this case, the system exhibits the complex trajectory
as shown in red line in Fig. 1(a). The searching region
consists with 42 lattice points, and the system explores 21
lattice points. On the other hand, Fig. 1(b) shows the case
where each the number of lattice points is the same, namely
LPx = 6 and LPy = 6. The searching region consist with 36
lattice points, however, the system explores only 6 points.

Table 1 shows the number of trajectories of 2-
dimensional HDO for each combination of the lattice
points. The case where the number of lattice points are

Table 2: Exploring rate of trajectories of the 2-dimensional
HDO for each combination of the lattice points

LPx

6 7 8 9 10

LPy

6 10/36 21/42 24/48 27/54 30/60
7 21/42 12/49 28/56 21/63 23.5/70
8 24/48 28/56 14/64 36/72 40/80
9 27/57 21/63 36/72 16/81 45/90
10 30/60 23.5/70 40/80 45/90 18/100

the same, some trajectories are co-existed, and each trajec-
tory explores only a limited lattice points. On the other
hand, almost all cases where the number of lattice points
have the different values, the system has only two trajecto-
ries. In this case, the trajectory explores many lattice points
compared with the same values as shown in Fig. 1, namely
such case has a significant searching capability.

Table 2 shows the exploring rate of trajectories of the
2-dimensional HDO for each combination of the lattice
points. The exploring rate means the rate at which the tra-
jectory passes through the lattice points within the search
region. In this case where some trajectories coexist in the
same parameters, the average rate is represented in Table
2. The denominator of each rate in Table 2 denotes the
total number of points in the searching region. This table
indicates a potential to improve search performance if the
region consists with the different number of lattice points.

In addition, the thresholds of the HDO are changed when
a period of search has passed. The period is depended on
the number of lattice points on the trajectory. The operation
of the changing thresholds is described as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Thminxi
=

PBxi−1 + PBxi

2
except for i = 1,N + 1, . . . ,N2 − N + 1

Thmaxxi
=

PBxi + PBxi+1

2
except for i = N, 2N, . . . ,N2

Thminyi
=

PByi−N + PByi

2
except for i = 1, 2, . . . ,N

Thmaxyi
=

PByi + PByi+N

2
except for i = N2 − (N − 1),N2 − (N − 2), . . . ,N2

(3)
PBi = (PBxi , PByi ) means the best location vector which

gives the best evaluation value of i-th particle. Thminxi
and

Thmaxxi
means the threshold of the divided region of the

first dimension. Thminyi
and Thmaxyi

means the threshold
of the divided region of the second dimension. Based on
Eq. (3) the thresholds which divide the search region are
changed. The meaning of Eq. (3) is the threshold is deter-
mined by the best information of the adjacent region. Note
that the operation of Eq. (3) changes only the range of each
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search region. The number of the lattice points in the region
is not changed. Thus, the interval of the lattice points is
changed. Since the interval of the lattice points is changed,
the system can search the new lattice points which are dif-
ferent from the previous lattice points. Thus, the system
may find the new best location. For two or higher dimen-
sional system, it is possible to overlap the search region
since the thresholds of each region are determined by the
adjacent best informations.

3. Experiments

2x

1x

Figure 2: Contour map of the Himmelblau function where
the red crosses denote the multi-solution.

In order to confirm the search performance of the HDO,
we carry out a numerical simulation by using well-known
MSP benchmark function. The benchmark function is
Himmeiblau function as the following:

fHimmelblau (x) =
(
x2

1 + x2 − 11
)2
+
(
x1 + x2

2 − 7
)2

(4)

where x = (x1, x2)T ∈ [−6, 6]2. This function has 4
global optima (solutions) as illustrated in Fig. 2 For the nu-
merical simulation of the function, we define that the cri-
terion value for successful search is fHimmelblau (x) < 0.1.
Figure. 3 shows a typical example of the HDO search pro-
cess. Figure. 3(a) shows the case N = 4 and (b) shows
the case N = 6, then we set the lattice points as LPx = 7
and LPy = 8. m denotes the interval period for change the
threshold by Eq. (3). Therefore m = 0 denotes the system
does not change the thresholds. In the case of N = 4(see
Fig. 3(a)), all regions don’t satisfy the criteria on the three
periods to change the thresholds. On the other hand, in the
case of N = 6(see Fig. 3(b)), some regions satisfy the cri-
teria. In this case, the HDO finds four feasible solutions
which satisfy the criteria.

Table 3 shows the number of regions that satisfy the cri-
terion C1 when the thresholds of the divided region are not
changed. If the number of divided regions is increased or
the number of lattice points of each region is increased,
the number of the regions which satisfy the criteria is in-
creased. Namely the resolution of the search space be-
comes high since the interval of the lattice points of the
search region becomes fine. However the computational

amount is increased when the resolution becomes high.
Thus, there exists a trade-off between the search perfor-
mance and the computational amount. To optimize such
problem is one of our future problems.

Table 4 shows the number of regions that satisfy the cri-
terion when the thresholds are changed. In this case, the
maximum number of the changes is three. The red num-
ber indicates that the system can find all four feasible so-
lutions. Comparing with the case where the thresholds are
not changed, the system that the thresholds are changed
can find all feasible solutions. Based on these results, we
confirmed the search performance of the adaptive threshold
system.

4. Conclusions

In this paper, we introduced the HDO, and we confirmed
its fundamental performance. The algorithm consists with
plural particles which search the optimal value of the given
evaluation function. The searching area is divided into
some region which corresponds to the number of parti-
cles. Each particle is placed in each region, and the par-
ticle searches the optimum value within the corresponding
region. The size of each region is determined by the adja-
cent best informations. Therefore the HDO can be regarded
as a kind of adaptive systems. Also, each search region is
discretized in order to reduce the computational amount of
search process. The number of the lattice points of each
dimension of the search region exhibited very important
role. We clarified that the trajectory in the region becomes
long if each dimension of the search region has the different
number of the lattice points.

We applied the HDO to the MSP. The results indicates
that the HDO exhibits good searching performance. Es-
pecially, in the case where the size of the search region is
varied, the searching performance is improved.

Finally, we enumerate some future problems of our
study.

1. Theoretical analysis of the dynamics of the HDO
2. Estimation of the computation amount of the HDO
3. Improvement of the threshold change procedure
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Figure 3: Search process of Himmelblau function. Blue squares denote the divided regions. Green square is best location
of each divided regions.
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