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Abstract—In this paper, a noise robust method for pitch
extraction using the autocorrelation function (ACF) and homo-
morphic deconvolution is proposed. In the proposed method, we
extract the vocal source information eliminating the vocal tract
information in the autocorrelation domain. The accuracy of pitch
extraction is significantly enhanced in an efficient way based on
the ACF calculation. Through experiments superior performance
of the proposed method relative to some conventional methods
is shown.

Index Terms—Pitch, autocorrelation function, homomorphic
deconvolution, vocal source, vocal tract.

I. INTRODUCTION

The pitch is a prominent parameter of speech, and highly
applicable for speech-related systems such as speech analysis-
synthesis, speech coding, speech enhancement and speaker
identification. In the above systems, the system performance
is significantly influenced by the accuracy of pitch extraction.
Most of the pitch extraction methods can be classified into the
time domain approach, frequency domain approach, and both
domains approach. They are performed effectively with clean
speech [1][2]. In the presence of noise, however, the periodic
structure of clean speech is destroyed. Thus, it is more difficult
to show the excellent performance of pitch extraction. Among
the conventional methods, the autocorrelation function (ACF)
[3] and average magnitude difference function (AMDF) [4]
show robustness against noise. The ACF uses the same set
of input samples of a signal, which correlates with itself by
its shifted delay. On the other hand, the AMDF treats the
difference between the original speech and its delayed version,
which shows similar properties with the ACF. The ACF is,
however, affected by the characteristics of vocal tract. For
reducing the vocal tract effect, many algorithms have been
developed based on a different form of autocorrelation calcula-
tion [5]-[7]. For example, YIN [5] focused on the conventional
ACF, normalization, and interpolation to reduce the error rates
in pitch estimation. Correntropy [6] also provides the similar
properties to the ACF. In [6], the authors use the reproducing
kernel Hilbert space (RKHS) and the higher order statistics,
which preserve the properties of periodic signal to enhance
the extraction accuracy of pitch.

In highly noisy environments, the two correlation-based
methods; ACF and AMDEF, are not good enough compared
with the weighted autocorrelation function (WAF) [7]. The
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WATF also focuses on the ACF, but it is weighted by the inverse
of the AMDEF.

In the frequency domain, the cepstrum (CEP) method [8]
operates the logarithmic arithmetic for separating the peri-
odic components from the vocal tract contribution in speech.
Modified CEP (MCEP) [9] uses the liftering and clipping
operations on the log spectrum to overcome the defect of the
CEP method. In windowless ACF (WLACF) based cepstrum
method (WLACF-CEP) [10], firstly the periodicity of the
speech signal is emphasized by reducing the noise from the
noisy speech signal. Then, the CEP method is applied for
reducing the effect of the vocal tract. In low signal-to-noise
ratio (SNR) cases, unfortunately, the performances of the
above three CEP based methods are still affected by the noise
components remained in the quefrency domain.

Recently, BaNa [11] is addressed, which is a hybrid pitch
extraction algorithm that selects the first five spectral peaks
in the amplitude spectrum of the speech signal. From these
spectral peaks, BaNa calculates the ratios of the frequencies
with tolerance ranges and extracts the accurate pitch of the
speech signal.

In this paper, we propose to use a refined autocorrelation
function (RACF) for pitch extraction. Originally, the idea of
RACF was found in [12] where the vocal tract information
was extracted by using a low-pass lifter (LPL) for the linear
predictive analysis [12] of speech. The RACF was generated
from the homomorphic deconvolution [13] in the autocorrela-
tion domain. In this paper, we use the RACF to eliminate the
effect of vocal tract information utilizing a high-pass lifter
(HPL) instead of an LPL in [12]. The ACF provides the
convolutive properties of the vocal source and vocal tract
information. Therefore, in this paper, we propose the RACF
approach to extract more accurate true pitches from the vocal
source information and overcome the limitations of the ACF.

The remainder of this paper is organized as follows. Section
IT describes the principle of the proposed method. In Section
III, we verify the effectiveness of our method by comparing
with some existing methods through experiments. Finally, we
conclude this paper in Section IV.

II. PROPOSED METHOD

Let us assume that the clean speech signal, s(n), is cor-
rupted by noise, v(n). Thus, the noisy speech, x(n), is
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Fig. 1. Block diagram of the proposed method
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Fig. 2. ACF of male clean speech and noisy speech by using Sms cut-off quefrency value at SNR=0 dB (white noise)

expressed as

z(n) = s(n) +v(n). (1)
Figure 1 shows the block diagram of the proposed method.
Firstly we apply a low pass filter (LPF) to reduce the effect of
noise from the noisy speech signal for increasing the accuracy
of pitch extraction. Then, the autocorrelation of the noisy
speech signal is computed as

where ¢p,(7) and ¢, (7) are the autocorrelation functions of the
vocal tract and the vocal source, respectively, and * denotes the
convolution. Eq. (3) indicates that the ¢(7) is highly influenced
by the vocal tract information ¢y, (), which makes difficult to
detect more appropriate pitches.

Next, we employ the homomorphic deconvolution technique
which consists of CEP analysis, high-pass lifter and inverse
CEP analysis in the autocorrealtion domain. The CEP of the
ACF can be defined as

P = o)+ 7] @ Yra(r) = DF Tl ()] @
where R,s(7) and R,,(7) correspond to the autocorrelation ypare
functions of the clean speech signal and noise, respectively, o(f) = log([DFT[¢(1)]]). 5)

and 7 is the lag number.
In (2), ¢(7) can also be written as

¢(7) = On(7) * 6p(7) 3)

DFT[-] and IDFT[:] mean discrete Fourier transform and
inverse discrete Fourier transform, respectively. In (5), o(f) is
the logarithm spectrum, which preserves the additive property
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Fig. 3. ACF of female clean speech and noisy speech by using 1ms cut-off quefrency value at SNR=0 dB (white noise)
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Fig. 4. Relation between cut-off quefrency level of HPL and GPE at different
SNRs (female speakers).

of the logarithm spectrum of the vocal source and that of the
vocal tract. Thus, its IDFT operation separates the contribution
of the ACF of the vocal tract from that of the source in the
CEP domain. We apply a high-pass lifter (HPL) on the CEP
of the ACF. The HPL is used to eliminate the effect of the
vocal tract. The vocal source information v,.,(7) on the CEP
can be obtained by multiplying a HPL, L(7), as

wTP(T) = Yrn(7)L(T) (6)

Fig. 5. Relation between cut-off quefrency level of HPL and GPE at different
SNRs (male speakers).

L(r) = {

where L' represents the cut-off quefrency level. It should
be noted here that the symmetric property of real CEP is
considered.

For generating the RACF, the inverse CEP operation is
applied to the v, (7) as

¢p(7) = IDFT(exp(Xp(f)))

0, for OSTSL,,M—LISTSM
1, otherwise

)

®)
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Fig. 6. GPE for four male speakers with different types of noise under different SNR levels.

where
Xp(f) = DET[yp(7)]. )

Finally, from the resulting ACF ¢,(7), the pitch period is
determined by finding the maximum peak in a range of the
possible pitch period as done in the ACF method.

Figures 2 and 3 show examples of how to determine the
pitch period by using the proposed method. In Figs. 2 and
3, we consider the aliasing in the ACF of male and female
speakers for clean speech and noisy speech, respectively. In
the ACF, the effects of the vocal source and vocal tract
are convolved with each other. Therefore, sometimes false
peaks arise in the ACF. In Fig. 2, the low pitched male
speaker provides a long pitch period. For this reason, the
pitch extraction is less affected by the convolutive behavior
of vocal source and vocal tract. We used an LPL and an HPL
with the cut-off quefrency value 5Sms, to generate the ACF of
the vocal tract information, ¢p,(7), as well as the ACF of the
vocal source information, ¢, (7). In Fig. 3, the high pitched

female speaker has a short pitch period. This results in that
the vocal source information is highly overlapped to the vocal
tract information. We used an LPL and an HPL with the cut-
off quefrency value to generate the ACFs of vocal source and
vocal tract information. In Fig. 3, it is shown that the ACF of
the vocal source, ¢,(7) provides higher accuracy to identify
the true peak.

III. EXPERIMENTS
A. Experimental Condition

Experiments were conducted on speech signals, spoken by
four Japanese male and four female speakers, which were
sampled at a rate of 10 kHz. The speech materials are 11
sec long sentences taken from a database developed by NTT
Advanced Technology Corporation [14]. To generate the noisy
speech, we added different types of noise to the speech signals.
White noise, pink noise, babble noise, and factory noise were
taken from the NOISEX92 database [15], while train noise
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Fig. 7. GPE for four female speakers with different types of noise under different SNR levels.

was taken from the Japanese Electronic Industry Development
Association (JEIDA) noise database [16]. The SNR was set to
-5, 0, 5, 10, 20, oo [dB] and the other experimental conditions
were frame length of 51.2 ms except for BaNa, frame shift of
10ms, band limitation of 3.4 kHz and DFT (IDFT) length, M,
of 1024 points.

The following error e(l) was used for the evaluation of
fundamental frequency extraction accuracy based on Rabiner’s
method [2]:

e(l) = F1(l) — Fx(l), for 1=1,2...k (10)

where k corresponds to the number of frames in the utterance,
Fi(1) and F5(1) are the fundamental frequency extracted from
the noisy speech and the true fundamental frequency at the
[-th frame, respectively. In (10), e(!) indicates an extraction
error. If |e(l)] > 10 Hz, we recognized the error as gross
pitch error (GPE). We detected and assessed only voiced parts
of sentences for the extraction of the pitch.
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B. Preliminary Experiments

Figures 4 and 5 represent the selection of more appropriate
cut-off quefrency levels of the HPL in male and female
speakers, respectively. From Fig. 4, we observe that the 1ms
HPL of RACF shows lower GPE rates at low SNR for female
speakers. On the other hand, we see that the Sms HPL of
RACF shows lower GPE rates at low SNRs (-5dB and 0dB)
for male speakers in Fig. 5. In Figs. 4 and 5, the cut-off
quefrency levels of 2ms and 4ms HPL provide the lowest error
rate in clean speech, but these are competitive with the cut-off
quefrency levels of 1ms and Sms HPL, respectively. From this
point of view, we select the threshold levels of HPL as 1ms
and Sms for female speech and for male speech, respectively,
in the proposed method.

C. Performance Comparison

The pitch extraction performance of the conventional and
proposed methods was investigated. In white noise, the power

on Smart Info-Media Systems in Asia (SISA 2019), Sep. 4-6, 2019
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spectral density is constant across the entire frequency spec-
trum, while the power spectral density is not uniformly dis-
tributed in color noise. All parameters of the conventional
methods are the same as those in the proposed method, except
for the frame length for BaNa. Specifically, for BaNa the frame
length was set as 60 ms according to the suggestion in [11].
The source code to implement BaNa was collected from [17].

Figures 6 and 7 show the average GPE results of four
male and four female speech data, respectively, with different
types on noise. The speech database used, NTT Advanced
Technology database, has no ground truth of fundamental
frequency, thus we manually determined the fundamental
frequency for each frame by sight carefully. From Fig. 6, it is
evident that the performance of the proposed method achieves
the lowest average GPE rate [%] among all methods to be
compared at every SNR, except for the low SNR case in white
noise where the ACF provides better performance. The ACF
in white noise gathers the affects on the first lag, while the
other lags lead to them vanishing. For babble noise in the
male speaker, the proposed method performs better in high
SNR environments, but BaNa performs better at low SNR. For
the female speaker in Fig. 7, it is observable that the average
GPE [%] of the proposed method is significantly superior to
the other conventional methods over all SNR cases, except
for BaNa. BaNa performs much better for female speech than
for male speech, because wider harmonics in the frequency
domain are used. However, it should noted here that the
computational complexity of BaNa is extremely high. Table
1 shows the processing time per one-second data for each
method (averaged for five trials in each method). The computer
we used was a PC with Intel (R) Core(TM) i5-6400K, 4 [GHZ]
clock speed of CPU and 8 [Gigabytes] of memory.

IV. CONCLUSION

In this paper, we proposed a simple and noise robust method
to extract the pitch of speech more accurately utilizing the
ACF of the vocal source. Experimental results showed that
the proposed method is an efficient and effective method to
extract the pitch even in several noise environments.
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