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Abstract—This paper describes an original methodology for 

the modeling of parasitic inductive couplings. The key idea is the 
use of magnetic hooks which are gates for magnetic fluxes that 
cross conductive loops and consequently induce parasitic 
voltages, thus disturbing the signal integrity. The multiple 
connected domains of integrated circuits are modeled by a 
Magneto-Electric-Equivalent-Circuit (MEEC), consisting of two 
mutual coupled circuits, an electric and magnetic one. Magnetic 
hooks are the externally connected nodes of the magnetic circuit.  
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I.  INTRODUCTION AND PROBLEM FORMULATION 
After observing the outstanding social importance of the 

nano-electronics, a steering European committee issued [1]. 
‘More Moore’, ‘More than Moore’ and Design Automation 
are identified as central technology pillars that will underpin 
the future of the nano-electronics industry for the foreseeable 
future. Sustained downscale in the integrated circuits (IC) 
technology generate not only an incredible complexity of 
these systems, but also an increase of their running frequency. 
Many research projects aim to study subsequent effects, such 
as electromagnetic (EM) coupling (EM effects of noisy 
environment, substrate noise – internal IC coupling, etc.) in 
RF-IC blocks in the high frequency range; over 40 GHz. 
Advances described here are the result of the research project 
[2] whose main objective was to establish and to consolidate 
an effective bridge from layout to circuit in the RF-IC design. 
That means to develop new, efficient and accurate model 
extraction techniques in the way from Maxwell to Kirchhoff, 
which consists of three major steps: field problem formulation, 
numeric discretization and order reduction. The EM field 
problem is governed by Maxwell partial differential equations 
(PDE) with appropriate boundary conditions. Discrete, 
numerical non-compact model is described by a large system 
of differential-algebraic equations (DAE) and the goal is to 
obtain a reduced model, an equivalent compact circuit 
described by ordinary differential equations (ODE).  

Proper boundary conditions are key aspects in the EM field 
problem formulation. The most appropriate for our needs 
seems to be the Electromagnetic Circuit Element (EMCE) 
boundary conditions (b.c.). These boundary conditions allow 
the compatibility and interconnection of devices having 
distributed parameters with any external circuit, solving so 
field-circuit coupled problems. In the simplest Electric Circuit 
Element (ECE) form of this b.c., disjoint surfaces S1, S2,…,Sm, 

called electric terminals, are identified on the boundary Σ of 
the computational domain Ω. In this case, there is no magnetic 
coupling between modeled device and its environment (Bn=0), 
electric currents cross the boundary only through terminals 
(Jn=0, in rest), each terminal being equipotential (Et=0):  

n·curl E = 0 on Σ; n·curl H = 0 on Σ � S’; n^E = 0 on S’,    
(1) 

where n is the normal unitary vector, E, H are the electric and  
magnetic fields strength, S’ is the union of electric terminals. 

 In the EMCE case, the magnetic coupling is allowed, but 
only through magnetic terminals: S1”, S”2,…,S”m’  their union 
being denoted by S”: 
                  n · curl E = 0 on Σ-S”;     n · curl H = 0 on Σ � S’;   
                   n x E = 0 on S’;     n x H = 0 on S”.                    (2)               

These new b.c. allow the coupling of the device with external 
electric as well magnetic circuits. Each terminal has two 
characteristic signals: current/flux and voltage, one being the 
input signal and the other being the output signal: 

El. terminal:  ;)(     ;)( ∫∫ Σ⊂′∂
⋅=⋅=

kk CkSk dtvdti rErH              (3) 

Mg. terminal: ∫∫ ∫ Σ⊂′′∂
⋅=′⋅−=

kk Cmk
t

Sk dtvtddt rHrE )(;)(
0

ϕ .    (4) 

Although there is no theoretical difference between them, we 
will call the intentional terminals as “connectors” and the 
parasitic terminals as “hooks”. There are many fundamental 
consequences of EMCE boundary  conditions: current and 
flux conservation as in Kirchhoff current/flux law (KC/FL); 
voltages law (KVL); expression of power transferred by the 
EMCE terminals; solution uniqueness theorem; as well as 
superposition theorems, thus resulting the operational form of 
the input-output relation, in the case of a hybrid-controlled, 
linear EMCE [3].  

 Considering a computational domains Ω with holes, it is 
obtained a more general concept of MEMCE (multiple 
connected EMCE). According to the Timotin’s theorem [4], 
the transferred power by these kinds of domains (Fig. 1) is:  
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Fig. 1. Multiple connected Electromagnetic Circuit Element (MEMCE). 

where the first term is related to the electric terminals, the 
second term is the power transferred by the magnetic terminals 
and the last term is related to the tubular holes of the 
computational domain. 

Any tubular hole s may be removed, by the extension of Ω 
with a surface Ss, which cover the hole; or by an appropriate 
cut of Ω with a surface Ts. Therefore a hole introduces four 
signals, which describe the EM coupling:  

loop e.m.f./m.m.f.: ∫∫ ∂∂
⋅=⋅=

ss SsSs dfde ,    , rHrE       (6) 

cut e.m.f./m.m.f:   ∫∫ ∂∂
⋅=⋅=

ss TsTs dfde .    , 00 rHrE          (7) 

The easiest way to describe the topology of Ω is by its 
graph and a tree/co-tree decomposition. Each co-tree branch 
generate a fundamental loop and by its cut is generated a 
fundamental cut-section.   

II. NUMERICAL APPROACH 

A. Principles of Finite Integrals Technique (FIT):  
FIT is a numerical method to solve field problems, based 

on spatial discretization “without shape functions”, using [5]: 
dual staggered orthogonal grids, (Yee type = “complex of 
Cartesian cells”, nodes of secondary grid are in the centers of 
the primary grid cells), suitable for our Manhattan geometry; 
global variables as DOFs: voltages and fluxes on grid 
elements (faces, branches), and not local field components;  
global form of field equations (neither differential form as in 
FDTD, nor weak form as in FEM, nor integral equations as in 
BEM/MoM). The global field equations written on the mesh 
cells elements are called Maxwell Grid Equations (MGE). 
There is no numerical error in these fundamental equations, 
discretization errors being transferred to the constitutive 
relations. MGE are metric-free, sparse, mimetic and 
conservative system of DAE, without spurious modes: 

13)-(8                                                      . 
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Hodge operators describe material behavior, linking 
quantities defined on faces and dual branches.  

⎪
⎩

⎪
⎨

⎧

=⇒=
=⇒=

=⇒=

ϕν
ψε

σ

νm

ε

σ

MuBH
uMED

uMiEJ
                                           (14-16) 

These operators are metric-dependent and they hold the 
discretization error. Classical FIT = MGE + Hodge (extracted 
from uniform field in each cell) must be improved and adapted, 
in order to achieve the requirements of the nowadays IC 
designers. We did it by domain partitioning (DP).  

B. Local Magneto-Electric-Equivalent Circuit (MEEC)  
Discrete form of Hodge operators (14-16) are the 

constitutive relations of two circuits: an electric one and a 
magnetic one, whereas MGE (8-10,12) are the general form of 
Kirchhoff equations of these circuits, which are coupled by 
means of voltage sources, controlled in current (actually in 
time derivative of magnetic flux, in the case of electric 
circuit). The graphs of these circuits are the two staggered 
discretization grids (Fig. 2).  

C. State Space Models based on FIT 
The MEEC equations, generated by FIT can be written as: 
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conducting to the standard descriptor, (semi)state equations: 
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Fig. 2. Local Magneto(right)-Electro(left)-Equivalent-Circuits (MEEC) 
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if the discrete form of the EMCE boundary conditions are 
added [6]. Thus a Multiple-Inputs-Multiple-Outputs (MIMO) 
dynamic system is identified. The state variables x are the 
electric and magnetic voltages along the branches of primary 
and secondary FIT grids, respectively, augmented with the 
vector of output quantities y. Each floating terminal has a pair 
of input/output signals: current/flux or voltage, depending on 
excitation type. 

III. MODEL ORDER REDUCTION 

A. AFS-VF algorithm 
There are many approaches and techniques to reduce the 

order of the model. According our experience, one of the most 
efficient methods to reduce the order of RF-IC models is 
based on Vector Fitting (VF) [7].  VF starts from the values of 
the transfer function, computed from (22) in a set of given 
frequency samples and it finds the best rational approximation 
of this frequency characteristic. For the problems we consider, 
there is no prior knowledge of these frequency characteristic 
samples. That is why a method to generate an optimal list of 
samples, by Adaptive Frequency Sampling (AFS), aiming to 
minimize the approximation error and to reduce the 
computational effort was implemented and tested on 
multiprocessor computers. Thus, a robust and efficient 
reduction procedure, called AFS-VF was obtained [8]. 

B. Domain Decomposition (DD) and Partitioning ( DP) 
The most expensive step of the MOR is the solving for 

several frequency samples, of the linear systems of complex 
equations ( ) BuxGC =+ωj , aiming to compute the transfer 
function. Therefore an efficient technique to reduce the MOR 
computational effort is to decrease the number of frequency 
samples, as is done in AFS-VF. Another solution is to 
diminish the system size, without treating the accuracy. For 
this reason, the computational domain is partitioned in several 
sub-domains, each having a different regime of 
electromagnetic field. A typical IC is vertically partitioned as 
in Fig. 3, with:  
• Electro-quasi-static (EQS) in Si substrate; 
• Electro-static (ES) and magneto-static (MS) in air; 
• Nonlinear drift-diffusion (DD) in active components; 
• Ful-wave (FW) in SiO2; 
• Magneto-quasi-static (MQS) in metallic conductors; 
• Transmission-line (TL) equations in long interconnects. 

Each subdomain is an EMCE, interconnected by terminals.  
The thin SiO2 layer in which metal traces are embedded is 
horizontally partitioned as a puzzle in components, according 
to the design schematics.  

 

 

 

 

 

Fig. 3. Vertical partitioning of ICs. 

  

 

 

 

 

 

 

 

Fig. 4. The global, reduced MEEC model of IC. 

Domain Decomposition (DD) is often used as the method 
to solve large problems iteratively on parallel computers. In 
DD, the continuity conditions are satisfied by field 
components: Et, Ht, Bn and Jn on the interfaces between 
subdomains, meaning Dirichlet and Neumann for both electric 
and magnetic fields [9]. Discrete forms of these interface 
conditions are applied for all grid nodes placed on interfaces. 
Therefore each interface node is a terminal, and in DD 
interfaces are transparent for the EM field. In DP the interface 
conditions are approximated as in EMCE b.c., for each 
subdomain and the interface surfaces are no longer perfectly 
transparent for the field. In compensation, the number of 
interconnection terminals is much lower than in DD, nodes 
with close potentials being clustered. Moreover, the 
subdomains may be independently modeled and therefore 
iterations are no longer needed. Thus DP is a terminal 
reduction procedure, optimal hooks identification is its success 
key. In DP order reduction is done not only by terminal 
reduction, but also by grid calibration, hierarchical structuring, 
and by MEEC elements removing; in several field regimes, 
remaining only RC (in EQS), C(ES), Rm (MS), RRm (MQS).  

C. Global MEEC model 
After the independent analysis and order reduction of all 

sub-domains, the extracted models are interconnected, 
generating the global magneto-electric circuit model. 
Unfortunately, since union of simple connected sub-domains 
is not always simple connected, the multiple connected 
domains should be treated carefully. It is the frequent case of 
circuits, which contain mesh holes (due to internal puzzle 
pieces that are missing). According to (5) these holes generate 
additional interactions, due to parasitic voltages, induced by 
magnetic fluxes passing through these holes, in the surrounded 
circuit loops. To model them, we place a magnetic hook in the 
hole of each fundamental loop of the electric circuit. The 
electric induced voltages are modeled by voltage sources 
placed in the co-tree branches of the electric circuit, sources 
controlled by the time derivative of the magnetic circuit 
"currents" (actually magnetic fluxes).Therefore, the global 
MEEC model has two circuits, coupled by controlled sources, 
as in Fig. 4. The topology of magnetic circuit of subdomains 
with MS field is a complete graph, with resistive branches. 
Since scalar MS potential satisfies Laplace equation, magnetic 
permeances G’m = μ0C/ε0 can be rapid extracted with FastCap 
[10]. Global MEEC is a sparse, reduced version of the local 
MEEC. The magnetic circuit has magnetic hooks as nodes. In 
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addition to the nodes generated by IC meshes, other magnetic 
hooks are placed on the air/package boundary, aiming to 
describe the inductive coupling with environment. 

IV. RESULTS AND VALIDATION 
In this section we will consider an example, which refers 

to a multiple connected conductor placed in air, over a Si 
substrate (its shape is as in Fig. 6 - up). It is included in a 3D 
rectangular box and the two ends of the conductor that touch 
the boundary are electric terminals, one grounded, and the 
other voltage excited. The box faces placed parallel to the 
conductor plane are magnetic hooks. The reference solution is 
the conductor impedance, computed by solving with FIT, in 
the EMCE box the Maxwell’s equations. A tree comprising 
the three internal branches of conductor generates three 
independent loops that are the circuit meshes, which 
correspond in this simple case with the three internal magnetic 
hooks. In order to characterize the inductive effects, the MS 
field distribution was numerically computed in half of the 
computational domain, with Dirichlet boundary condition on 
hooks. Then the terminal magnetic conductance (permeance) 
matrix G’m of size 4 × 4 is obtained. Figs 5-6 show the MEEC 
model, which is perfectly equivalent with the RL model of 
conductor, if the magnetic noise Vn is missing. 

 

Fig. 5. Simple test case: Dervation circuit, circuit component of MEEC. 

 

 

Fig. 6. Simple test case - component of MEEC: Electric circuit (up), 
Magnetic circuit  (down). 

The relative error at low frequency between the simulation of 
this circuit and the simulation for the whole 3D domain with 
full wave (FW) field computed with FIT was only 0.6 %.  This 
result validates the proposed approach and it reveals also the 
efficiency of MEEC. The presented procedure can be easily 

generalized for other conductor shapes, for which MEEC 
model can be extracted automatically, from layout. Moreover, 
each component may have its own parasitic model. More 
details and other validation tests are presented in [11]. 

V. CONCLUSIONS 
Magnetic fluxes passing through loops of integrated 

circuits are sources of parasitic induced voltages. Multiple 
connected computational domains (as all circuits are) may be 
reduced to simple connected ones, by filling their holes 
(meshes). The natural way to identify these topology 
regularizations is to find a tree/co-tree decomposition of the 
circuit graph. Due to the fact that integrated circuits have their 
conductors embedded in a very thin layer, they can be 
considered as planar shells, having magnetic hooks placed 
over the circuit mesh holes. By using these hooks, a MEEC 
model may be automatically extracted, providing an efficient, 
accurate and robust modeling technique for inductive coupling 
of ICs with their EM environment.  

Contrary to approaches based on partial inductances (such 
PEEC [12]), our DP/MEEC approach, based on meshes is 
robust, it has a solid theoretical base, and it enables the 
coupling with variable EM environments. Unlike PEEC and 
their variants, MEEC is able to characterize the susceptibility 
of modeled circuits to be influenced by external, parasitic, 
magnetic fields.  
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