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Abstract—The Van Veen Loop, Large Loop Antenna (LLA),
or Loop Antenna System (LAS), provides rapid determination of
the net magnetic dipole moment of compact devices, especially
in the frequency range of 9 kHz to 30 MHz, with minimal
post processing of measured data. The symmetric shielded loop
structure inherently rejects electric field excitation to a large
extent if the action of the current transformer is ideal. Here
we consider the electric-field or common-mode response of an
LLA with an imperfect current transformer. The impetus for
this work is the application of the LLA to the characterization
of Inductive Power Transfer (IPT) systems. It has been shown
that such IPT systems exhibit, in addition to an intense magnetic
dipole moment, an intense electric dipole moment. This is due
primarily to the turn-to-turn voltage drop in inductive couplers.

I. INTRODUCTION

The Van Veen loop, Large Loop Antenna (LLA), or Loop
Antenna System (LAS), provides an accurate assessment of the
net vector dipole moment of a compact source of magnetic
field interference [1]–[8]. The system consists of three or-
thogonal shielded loops each with two symmetrically-located
feeds. These symmetrically-located feeds improve the rejec-
tion of electric field allowing accurate measurement of three
orthogonal vector components of magnetic dipole moment,
even in the presence of intense electric field. It is, however,
not only the shielded structure but also the current sensing
transformer that ultimately provides electric field rejection as
will be clarified here.

II. 3-PORT MODEL FOR CURRENT TRANSFORMER

In refs. [1]–[8], the current transformer is treated as an ideal
current transformer modeled by a transimpedance, the ratio of
output voltage to input current and an insertion impedance,
and the effective impedance inserted into the LLA. The non-
ideal current transformer necessarily requires a more complex
representation. We note that the current transformer specified
in ref. [4] is fully enclosed by a shield with three coaxial
ports each having a coaxial connecter. Thus, it is not only
sound to consider the transformer as a 3-port network, it
is also possible to measure the 3-port network parameters
using a conventional network analyzer. The analytical 3-port
model for the current transformer is useful for understanding
the asymmetry introduced by the inter-winding capacitance.
Referring to Fig. 1, in the absence of inter-winding capacitance
and turn-to-turn capacitance, the 3-port admittance matrix of

the current transformer is:
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where L1 is the self inductance of the primary, L2 is the self
inductance of the secondary, and M is the mutual inductance.
Note that Y31 = −Y32. This provides current balun behavior
in the current transformer [9]; that is, since Y11 = Y22,
if the transformer is driven from port 3, I2 = −I1. In
current sensing operation, the output is proportional to I1−I2.
Thus, the transformer does not respond at all to common-
mode excitation. When inter-winding capacitance is present,
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Fig. 1. Detailed circuit model for current transformer including inter-winding
capacitance and turn-to-turn capacitance. The inter-winding capacitance de-
stroys the symmetry of the admittance matrix and introduces common-mode
response.

it is straightforward to derive the admittance matrix using the
indefinite admittance matrix approach. The unique entries of
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the admittance matrix are:

YT11 =

�
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ω2M2

Zsec

�−1

+ jωCIW , (2)

YT22 = Y11, (3)
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, (5)
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, and (6)
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− jωCIW , (7)

where Zpri = jωL1||
1

jωCPRI
, Zsec = jωL2||

1

jωCSEC
. As

shown in Fig. 1, CSEC approximately represents the turn-to-
turn distributed capacitance of the 25-turn secondary, which
can be significant at the upper end of the 9 kHz to 30
MHz frequency range. On the other hand, the primary has
a single turn consisting of the center conductor of the coaxial
line and the transformer housing or shield. Thus, the parallel
capacitance is typically not significant in this frequency range.
Since the transformer is reciprocal, the admittance matrix is
symmetric about its principal diagonal. As can be seen by
comparing Eqn. 1 to Eqn. 2-7, the inter-winding capacitance
causes: Y31 �= −Y32. Additionally, the inter-winding capaci-
tance affects the matrix elements on the principal diagonal, the
self admittances. This modifies the overall frequency response,
including to some extent the differential or current mode
response. We can experimentally determine CIW as:

− (Y31 + Y32) = jωCIW . (8)

Finally, we note that the inter-winding capacitance is related
to the number of turns in the secondary; that is, it increases as
the number of turns in the secondary is increased. However,
the low-frequency limit of operation, the effective turns ratio,
and the insertion impedance are set by the requirements in
ref. [4], namely a transimpedance of 1 Ω and an operating
frequency range of 9 kHz to 30 MHz. For this reason it is
not possible to simply employ a small number of turns in the
secondary to minimize parasitic behavior.

III. 3-PORT MODEL FOR THE LLA AND FOLDED DIPOLE
A 3-port electromagnetic model for the combination of

folded dipole and large loop was computed in ref. [8] using
the Numerical Electromagnetics Code. Here we use exactly
the same model, including the same orientation of the loop
and the height of the loop above the ground plane. Thus, the
results here can be compared directly to those in ref. [8].
The left and right ports of the loop are designated ports 1
and 2 respectively, while the port of the folded dipole is
designated as port 3. The transfer admittances, Y31 and Y32

as computed from the NEC model in ref. [8], are shown in
Fig. 2. As can be seen, Y31 = −Y32 at low frequencies, but
differ significantly near 30 MHz. This is due to the asymmetry

of the folded dipole feed. The asymmetry in the folded dipole
feed is what is responsible for the excitation of electric dipole
moment in the folded dipole structure. Despite the asymmetry
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Fig. 2. Admittance parameters for folded-dipole, LLA combination as
computed by NEC and the commercial finite element simulation HFSS.
The arrangement is exactly the same as that used in ref. [8]. Note that the
components −Y32 are plotted to facilitate comparison. As can be seen the two
different (MoM versus FEM) numerical simulations are in good agreement.

in the transfer admittances, the interior circuit of the LLA,
if the LLA is symmetric, acts as a 1:1 current balun. The
asymmetry in the transfer admittances cannot cause common-
mode current to flow in the LLA if the current transformer
acts as an ideal transformer. In ref. [8], the validation factor
was computed by sampling the current at the midpoint of the
lower half of the large loop. This is equivalent to having a
perfect current transformer with a transimpedance of 1 Ω and
negligible insertion impedance. Thus, despite the fact that the
data in Fig. 2 is exactly the same data used in ref. [8], the
results in ref. [8] do not reflect the common-mode or electric
field response.

IV. COMPOSITE ADMITTANCE MATRIX REPRESENTATION

The interior structure of the LLA can be modeled sys-
tematically by building up a composite admittance matrix
representation from the equivalent network in Fig. 3. In the
analysis that follows, multi-port admittance parameters are
defined with positive port current entering the terminal of the
port with the positive voltage reference. The interior circuit can
be modeled starting with the admittance matrix representation
of a uniform transmission line:

[Y ] =

�

−jY0 cot θ jY0 csc θ
jY0 csc θ −jY0 cot θ

�

. (9)

Since the terminating resistors are situated across the left and
right ports of the upper portion of the coaxial cable, the 2-port
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Fig. 3. Generalized Equivalent Network for the Van Veen Antenna or Large Loop Antenna (LLA). The 3-port network parameters of the Van-Veen Loop
exterior and DUT antenna (the folded dipole) can be computed using electromagnetic simulation. The 3-port transformer representation can be measured using
a VNA since it has 3 coaxial ports. Note that Port 12 of the folded dipole implicitly contains a current balun representing the “infinite balun” structure by
which the folded dipole is fed.

admittance matrix for the upper interior in Fig. 3 is:

[YU ] =

�

G 0
0 0

�

+

�

−jY0 cot θU jY0 csc θU
jY0 csc θU −jY0 cot θU

�

+

�

0 0
0 G

�

(10)

where θU = l1kC , Y0 = 1

RC
, and G = 1

RT
. Since a

terminating resistor exists only across the left-hand port of the
lower left portion of the coaxial cable, the 2-port admittance
matrix for the lower left interior in Fig. 3 is:

[YLL] =

�

G 0
0 0

�

+

�

−jY0 cot θLL jY0 csc θLL

jY0 csc θLL −jY0 cot θLL

�

(11)

where θLL = l2LkC . Since a terminating resistor exists only
across the right-hand port of the lower right portion of the
coaxial cable, the 2-port admittance matrix for the lower right
interior in Fig. 3 is:

[YLR] =

�

−jY0 cot θLR jY0 csc θLR

jY0 csc θLR −jY0 cot θLR

�

+

�

0 0
0 G

�

(12)

where θLR = l2RkC . The composite admittance matrix is thus:

[Y ] =





















�

YU
�

� �� �

2×2

[0] [0] [0] [0]

[0]
�

YLL
�

� �� �

2×2

[0] [0] [0]

[0] [0]
�

YLR
�

� �� �

2×2

[0] [0]

[0] [0] [0]
�

YT
�

� �� �

3×3

[0]

[0] [0] [0] [0]
�

YL
�

� �� �

3×3





















(13)

where YU is the 2-port admittance matrix representing the top
portion of the coaxial line and terminating resistors, YLL is the
2-port admittance matrix representing the lower left portion
of the coaxial line and terminating resistors, YLR is the 2-
port admittance matrix representing the lower right portion
of the coaxial line and terminating resistors, YT is the 3-
port admittance matrix representing the current transformer in
Eqns. 2-7, and YL is the 3-port admittance matrix representing
the combination of the LLA and folded dipole as described in
ref. [8]. At this point in the analysis, I1 . . . I12 and V1 . . . V12

are unknown. However, ports 4 and 7 are connected in parallel
as are ports 8 and 5. Thus, V4 = V7, V5 = V8, I4 = −I7,
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and I5 = −I8. The source in the CISPR 16-2-3 standard
exhibits a 50 Ohm output impedance and the validation factor
is defined as the ratio of loop current (assuming a perfect
current transformer) to the source open circuit voltage, VG.
Therefore, we set VG = 1 and thus: V12 = 1 − RGI12.
Finally, a RL = 50 Ω load is connected to port 9 and thus
V9 = −RLI9. Thus, a linear system can be set up and solved
for V9, the current transformer output.

V. RESULTS FOR VALIDATION FACTOR
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Fig. 4. Validation factor for 2 m diameter LLA as computed for an idealized
LLA with an ideal current transformer (blue), and an idealized LLA and a
non-ideal current transformer.
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combination was simulated by NEC. The arrangement is exactly the same as
that used in ref. [8]. The data for the current transformer was measured.

Predictions of the performance of a 2 m LLA constructed
in accordance to the CISPR 16-2-3 standard were made using

the numerical simulation in ref. [8]. The validation factor of
the LLA was computed using a non-ideal current transformer
model having L1 = 2.9 µH, L2 = 2.8 mH, C1 = 0, C2 = 2.9
fF, and CIW = 5 pF. The validation factor is the response
of the LLA to a folded dipole source which exhibits both a
magnetic and an electric dipole moment. As can be seen from
the data in Fig. 4, in positions 3 and 7 as described in Fig.
C.7 of ref. [4] (electric dipole in plane of loop aligned for
maximum excitation), the measured validation factor diverges
near 30 MHz. This is due to the LLA responding to the electric
dipole moment. It should be noted that what is plotted in
Fig. 4 is the output voltage of the current transformer, which
exhibits a nominal transimpedance of 1 Ω as specified in
ref. [4] when connected to a 50 Ohm receiver. The current
transformer employs a 25-turn secondary and an internal 50
Ω load such that the parallel combination of the internal load
and the receiver gives a 1 Volt-per-Ampere response.

VI. CONCLUSIONS
The electric field response of the symmetric LLA is non-

zero due to the finite common-mode rejection of the current
transformer. The LLA necessarily generates a finite common-
mode voltage at the secondary of the current transformer in
response to an electric dipole; this behavior is fundamental
and cannot be eliminated. A general model for a non-ideal
LLA, including non-commensurate coaxial transmission lines,
unequal terminating resistances, and a non-ideal current trans-
former, has been presented. Insertion of measured transformer
3-port scattering parameter data or an analytical model includ-
ing inter-winding capacitance into the model used in ref. [8]
predicts non-zero electric field response.
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