
A SLA-based Spark Cluster Scaling Method in Cloud
Environment

Yoori Oh Jieun Choi Eunjung Song Moonji Kim Yoonhee Kim
Dept. of Computer Science

Sookmyung Women’s University
Seoul, Korea

{yoori0203, jechoi1205}@sookmyung.ac.kr, {songfg78, km0420jj}@gmail.com, yulan@sookmyung.ac.kr

Abstract— As the development of Internet and mobile device
increases, there is a correspondingly increasing amount of data
produced by users of such technology worldwide. It is thus
essential to analyze such massive amounts of data reflective of the
big data era. Recently, Apache Spark has become popular for
analyzing big data, since it can process streaming data and
support real-time in-memory computing. Also, it is known to
execute applications faster than traditionally used Hadoop. Also
cloud technology provides flexible resource utilization
environment on-demand. When analyzing big data using Spark
in existing environments, it is difficult to provision resources
according to the system’s changing environment and the
influence of other users’ executions. Using cloud technology
however, it is possible to provision resources more effectively for
the execution of jobs through dynamic resource provision
methods. In this paper, we propose an auto-scaling framework
with corresponding algorithms to manage resources dynamically
in virtual environments, in order to meet user-specified SLA
(Service Level Agreement) given a set of limited resources. Our
experimental results on Spark in OpenStack demonstrate the
effectiveness of scaling resources to satisfy user SLAs.

Keywords—SLA, auto-scaling, Spark Cluster, resource
management,

I. INTRODUCTION

With the development of Internet and mobile devices, there
is a correspondingly increasing amount of data produced by
users of such technology worldwide. Accordingly, Apache
Hadoop [1], initially appeared as distributed processing
framework which supports big data analysis application which
cannot be processed with a single machine using MapReduce
algorithm. However, Hadoop [1] is known for having I/O
bottleneck during the reading and writing of data to disk. Also
it is unable to support real-time processing. Due to these
drawbacks, Apache Spark [2], was recently developed to
facilitate the processing of real-time streaming data and the
application of in-memory computing. Big data analysis is
difficult to process in batch-processing and usually consists of
successive several stages running for long time periods. In this
situation, it is essential that the system required to deal with
various jobs in real-time should be able to manage resources
dynamically.

Cloud technology provides suitable execution environment
satisfying Spark’s dynamic resource requirement, since it

enables Spark to use more than available physical resources
through virtualization. In this regard, it is crucial to apply
proper resource auto-scaling to handle difficult situations such
as various SLA (Service Level Agreement; e.g. deadline),
dynamic resource requirement, and unexpected job submit time.
Especially, Spark application users submit various
requirements during the processing of big data, thus it is
necessary for the user to provide scaling mechanism to meet
their SLAs.

In this paper, we propose an auto-scaling method for
utilizing resource of Spark clusters effectively in cloud
computing environment. The proposed auto-scaling method
has a goal to meet user-specified deadline. Also we perform
experiments to verify the effectiveness of the proposed scaling
algorithm.

This paper is organized as follows. Section 2 provides
related work of Apache Spark and Auto-Scaling. Section 3
presents the service architecture of auto-scaling framework.
Section 4 explains SLA based auto-scaling algorithm and we
discuss experiment in Section 5. Finally, we conclude in
Section 6.

II. RELATED WORK

A. Apache Spark
Spark [2] framework have emerged following existing

Hadoop [1] framework, which was studied widely. Spark [2]
supports distributed processing on several nodes which is
similar to Hadoop and in-memory computing as major feature.
Unlike Hadoop executing disk I/O for data processing, Spark
provides in-memory computing using a new concept of data
structure RDD (Resilient Distributed Dataset). It is useful for
iterative execution or streaming data processing, thus it could
derive execution result faster than Hadoop.

References [3]–[5] are studies for efficient execution of
Spark. H. Chen et al. [3] suggest entropy concept based
scheduling method to provide effective and reliable services
when it provides online parallel analysis services. Entropy
concept is used to measure disordering of system and it
becomes the standard of decision for reliability. They also
utilize dynamic core performance by scheduling their resources.
J. Yin et al. [4] are a study of optimization for parallel access in

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

big data processing. They propose a method of matching
storage server and parallel data request, and a plan to improve
the performance in interactive data access method. R.
Palamuttam et al. [5] suggest weather event detection and
tracking system using Spark. They analyze scientific
applications applying a new data structure, sRDD (scientific
RDD), and demonstrates a feature of data reuse between stages.
Sidhanta, Subhajit et al. [6] propose a model of job execution
time on Spark [2]. The model is used to estimate the
completion time of a given Spark job according to the size of
the input datasets, the number of iterations, and the number of
nodes in the cluster. It also estimates the cost optimal cluster
composition for running a given Spark job on a cloud under a
completion deadline.

B. Auto-Scaling
References [7]-[8] are studies of resource auto-scaling for

satisfying user’s requirements and efficient resource utilization.
Kang, Hyejeong et al. [7] suggest auto-scaling method in
hybrid cloud environment. They propose cost efficient
scheduling method to execute scientific applications satisfying
its deadline in private and public cloud environment. Ahn,
Yoonsun et al. [8] are a study of auto-scaling method
considering application pattern in hybrid cloud environment. It
proved proper resource utilization considering job’s deadline
and the feature of applications. References [9]-[10] are studies
about auto-scaling scheme to effectively improve cloud
resource usage for Hadoop big-data framework. Gandhi,
Anshul et al. [9] propose auto-scaling method in Hadoop
clusters. It represents a general model for execution time, tunes
some parameters to fit in each workload, and formulates the
estimated finish time. It shows auto-scaling method based on
that information. Jacob Leverich et al. [10] suggest scale-down
of clusters deploying distributed big-data processing
frameworks method that improve energy efficiency a Hadoop
cluster. Xueying Wang et al. [11] present an auto-scaling
approach for Hadoop system in private cloud in order to
improve resource utilization. Also, they consider inference
aware scaling method in the proposed multi-layer node model
to reduce performance damage owing to conflict from other
services. However, there was no auto-scaling method for Spark
[2] clusters to satisfy SLA.

III. SERVICE ARCHITECTURE OF AUTO-SCALING FRAMEWORK

In this section, we discuss architecture of our service
framework. Figure 1 shows architecture of auto-scaling
framework proposed in this paper. When a user submits a
Spark application for execution with a given SLA (deadline).
Spark application executes jobs using Openstack [12] as its
resource. Openstack [12] is an open source software that
provides large pools of compute, storage and networking
resources used for the private cloud. It enables auto-scaling
framework to dynamically scale resources on-demand.

‘Auto-Scaling Service’ plays a major role of auto-scaling
framework, providing auto-scaling by monitoring in runtime.
First, it monitors jobs in real-time whether it satisfies SLA
which user submitted. When it is not possible to meet user’s
requirements, it provides the information of which application
needs and how much it needs. This information is sent to run-

time scaling service. The Scaling service makes decision on
requested resource of each application in current situation.
Decision information is sent to scheduling service and
resources are scheduled for each application.

‘Metadata Management Service’ has aggregated information
of jobs, resources and VM. Job metadata and resource
metadata have information of profiling data created by
executing jobs before. VM catalog consists of VM information
of its cores, RAM and name. When the system needs to
schedule resources, these information is used to check the
satisfaction of SLA.

Fig 1. Architecture of Auto-Scaling Framework

IV. SLA BASED AUTO-SCALING ALGORITHM

Algorithms are classified under two groups: Run-time
Scaling (in Algorithm 1) and SLA monitoring (in Algorithm
2). For better understanding, main notations for the algorithms
are explained at the below:

• AL= {a|ai, i=1, 2, …, n}

: An application list which is running

• D : Deadline of each application

• RVM : Number of running VM

• EFT : Estimated finish time

• TT : Number of total tasks

• ST : Start time of application

• , : percentage of execution time on its stage to total
execution time

• SCALE_IN, SCALE_OUT = { [a, # of VM] | a AL}

: # of VM is amount of VM that the application wants
to scale in or out

: Sets of an application candidate and its VM amount to
scale-in and scale-out

Algorithm 1 describes run-time scaling method. It is
invoked when both SCALE_IN and SCALE_OUT sets are not
empty sets (line 2). When both sets have some elements, the

algorithm determines the number of applications to apply
scaling to in each candidate application set. The number of
VMs added or subtracted in each set for the first application are
added to the number of total addition and subtraction VMs
(line 3-4). And then it continues in a while loop until VMs for
the last application in SCALE_IN or SCALE_OUT is adjusted
(line 5-13). In the loop, the algorithm calculates the max
addition or subtraction of VMs while it checks the VM
numbers to add or subtract of each set in the while loop. After
that, it sends information of VMs and applications to scale-in
or scale-out to resource scheduling part (line 14). It waits for
next interval to monitor the execution situation (line 15) and
receives information periodically whether it needs scaling (line
16).

Algorithm 1. Run-time Scaling

Algorithm 2 shows monitoring algorithm based on SLA. It
provides the information on which application needs how many
VMs to scale-in or scale-out as a result. It calculates the
number of estimated execution tasks using the number of total
tasks, deadline for each application, execution ratio and
execution time of that moment (line 3). is the percentage of
execution time on its stage to total execution time. It checks the
number of estimated execution tasks against the number of
processed tasks (line 4). When the condition is true, it is
necessary to add VMs (line 6-9). And if the number of
estimated execution tasks is smaller than the number of
processed tasks, it requires a scale-in (line 12-15). Since EFT
(estimated finish time) is the array of execution time according
to the number of nodes in the cluster, index i means the number
of nodes in the cluster. It calculates estimated finish time in
case of applying to scale nodes (line 7, 13). It reflects the

execution ratio of its stage and estimated finish time. And it
determines the suitable cluster composition for finishing the
job within user-specified deadline (line 8, 14). It returns the
result in descending order of VM numbers in SCALE_IN and
SCALE_OUT sets.

Algorithm 2. SLA Monitoring

V. EXPERIMENTS

A. Preliminary Experiment
We compared execution times according to different

number of workers when executing the same job. The job is a
WordCount workload using a 5GB input data set. Worker VM
has 4 cores and 8GB RAM, and we measured total execution
time as the number of worker VM is increased for the map
stage, reduce stage and the whole execution represented as total
in Figure 4.

Fig 4. Execution Time for Different Number of Worker

Figure 4 shows the execution time for 4 different number of
workers. As the number of workers is increased from 1 to 2, 2
to 4 and 4 to 6, the total execution time is reduced by 38%,
45% and 16% respectively. Also, the execution time of the job
at the map stage is shorter than that of the reduce stage. As the
number of worker is increased, the execution time of map stage

is reduced by 49%, 45%, 15% while that of the reduce stage is
reduced by 31%, 44%, 21% respectively. Also in comparison,
the ratio of execution time at the map stage relative to the
reduce stage is 99%, 73%, 64%, and 55% respectively for the
different number of workers. This shows that the more workers
are added to the system, the more effectively the execution
time of map stage is reduced. Our experiment reveals that
scaling at map stage could get better result in execution time.

B. Scaling Validation for Spark Clusters
We verified the effectiveness of auto-scaling by executing a

WordCount workload using 5GB input dataset according to
different user-specified SLAs. The workload consists of 2 stage
and each stage has 5278 tasks. The ratio of map stage to reduce
stage is 1:2. We set the monitoring interval as 60s and
preparation time as 30s. The goal is to scale the number of
workers in the system in order to meet the user-specified
deadline.

Fig 5. Satisfying User-specified SLA with Proposed
Scaling Method

Figure 5 shows the performance of the proposed auto-
scaling method comparing to initial scheduling. For initial
scheduling method, we execute an application using 1 worker
or 2 workers. On the other hand, the auto-scaling method,
monitoring the execution of the application, performed scaling
dynamically to finish within the given deadline. When the
cluster is composed of 1 worker, we assign deadline as 1700s
and 900s. In case of 1700s, the cluster adds 1 worker and the
graph shows finishing within 1700s in Figure 5. When the
deadline is 900s, the application finishes within 900s by adding
3 workers in the cluster. When the cluster has 2 workers, we
assign deadline as 800s and 650s. The cluster adds 2 workers
and 4 workers for each case. When the deadline is 800s, the
system monitors how many tasks are processed at 90s for the
first time because of the preparation time (30s) and monitoring
interval (60s). The number of processed tasks is 230 and the
number of estimated execution tasks calculated by the
algorithm is 1187. Since the number of executed tasks are
smaller than estimated execution tasks, it requires a scale-out.
The algorithm determines the number of VMs to scale-out
using profiling data of execution time on different number of
worker VMs. If the cluster has 4 worker VMs, estimated finish
time is 611s. On the other hand, the application can finish in
536s using 6 worker VMs. As the difference between the

deadline and execution time is 710s, the plan of using 4 VMs is
selected. And they finish their application within each deadline.
Therefore, all cases are successfully finished within user-
specified deadline using auto-scaling method.

VI. CONCLUSION AND FUTURE WORK

With the exponential increase in the amount of data, more
and more people have resulted to the use of Spark clusters to
analyze big data. In the proposed scaling framework, Spark
clusters facilitate the dynamic utilization of resources in virtual
environments. In this paper we propose the auto-scaling
framework with corresponding algorithms. The algorithms
determine scaling decision and it calculates how many VMs to
scale-in or scale-out. Our experimental results of deploying
Spark clusters on OpenStack demonstrate the efficiency of
auto-scaling for executing Spark clusters. In the future, we
intend to research scale-out experiment to verify the
effectiveness of auto-scaling in Spark clusters.

ACKNOWLEDGMENT

This research was supported by Next-Generation
Information Computing Development Program through the
National Research Foundation of Korea(NRF) funded by the
Ministry of Science, ICT & Future Planning (2015M 3C
4A7065646)

REFERENCES

[1] Apache hadoop. [Online]. Available: http://hadoop.apache.org/.

[2] Apache Spark: Lightning-fast cluster computing, “Apache spark,” 2015.
[Online]. Available: https://spark.apache.org/

[3] H. Chen and F. Z. Wang, "Spark on entropy: A reliable & efficient
scheduler for low-latency parallel jobs in heterogeneous cloud," Local
Computer Networks Conference Workshops (LCN Workshops), 2015
IEEE 40th, Clearwater Beach, FL, 2015, pp. 708-713.

[4] J. Yin and J. Wang, "Optimize Parallel Data Access in Big Data
Processing," Cluster, Cloud and Grid Computing (CCGrid), 2015 15th
IEEE/ACM International Symposium on, Shenzhen, 2015, pp. 721-724.

[5] R. Palamuttam et al., "SciSpark: Applying in-memory distributed
computing to weather event detection and tracking," Big Data (Big
Data), 2015 IEEE International Conference on, Santa Clara, CA, 2015,
pp. 2020-2026.

[6] Sidhanta, Subhajit, Wojciech Golab, and Supratik Mukhopadhyay.
"OptEx: A Deadline-Aware Cost Optimization Model for Spark." arXiv
preprint arXiv:1603.07936 (2016).

[7] Kang, Hyejeong, et al. " A SLA-based VM Auto-Scaling Method in
Hybrid Cloud Computing for Scientific Computational Applications." ,
Journal of KIISE : Computer Systems and Theory 40(6), 2013.12, pp.
266-273.

[8] Ahn, Yoonsun, et al. " An Auto-Scaling Technic of Virtual Resources on
Hybrid Clouds for Scientific Applications.", Journal of KIISE :
Computer Systems and Theory 41(4), 2014.8, pp. 158-165

[9] Gandhi, Anshul, et al. "Autoscaling for Hadoop Clusters." (2016).

[10] Jacob Leverich and Christos Kozyrakis, “On the energy (in)efficiency of
Hadoop clusters, ACM SIGOPS Operating Systems Review, Vol. 44,
No. 1, pp. 61-65, 2010

[11] Xueying Wang, Zhihui Lu, et al. “InSTechAH: An Autoscaling Scheme
for Hadoop in the Private Cloud”, Services Computing (SCC), 2015
IEEE International Conference on, pp. 395-402, 2015.

[12] OpenStack, https://www.openstack.org/

