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Abstract— As the development of Internet and mobile device 
increases, there is a correspondingly increasing amount of data 
produced by users of such technology worldwide. It is thus 
essential to analyze such massive amounts of data reflective of the 
big data era. Recently, Apache Spark has become popular for 
analyzing big data, since it can process streaming data and 
support real-time in-memory computing. Also, it is known to 
execute applications faster than traditionally used Hadoop. Also 
cloud technology provides flexible resource utilization 
environment on-demand. When analyzing big data using Spark 
in existing environments, it is difficult to provision resources 
according to the system’s changing environment and the 
influence of other users’ executions. Using cloud technology 
however, it is possible to provision resources more effectively for 
the execution of jobs through dynamic resource provision 
methods. In this paper, we propose an auto-scaling framework 
with corresponding algorithms to manage resources dynamically 
in virtual environments, in order to meet user-specified SLA 
(Service Level Agreement) given a set of limited resources. Our 
experimental results on Spark in OpenStack demonstrate the 
effectiveness of scaling resources to satisfy user SLAs.  

Keywords—SLA, auto-scaling, Spark Cluster, resource 
management,  

I.  INTRODUCTION 

With the development of Internet and mobile devices, there 
is a correspondingly increasing amount of data produced by 
users of such technology worldwide. Accordingly, Apache 
Hadoop [1], initially appeared as distributed processing 
framework which supports big data analysis application which 
cannot be processed with a single machine using MapReduce 
algorithm. However, Hadoop [1] is known for having I/O 
bottleneck during the reading and writing of data to disk. Also 
it is unable to support real-time processing. Due to these 
drawbacks, Apache Spark [2], was recently developed to 
facilitate the processing of real-time streaming data and the 
application of in-memory computing. Big data analysis is 
difficult to process in batch-processing and usually consists of 
successive several stages running for long time periods. In this 
situation, it is essential that the system required to deal with 
various jobs in real-time should be able to manage resources 
dynamically.  

Cloud technology provides suitable execution environment 
satisfying Spark’s dynamic resource requirement, since it 

enables Spark to use more than available physical resources 
through virtualization. In this regard, it is crucial to apply 
proper resource auto-scaling to handle difficult situations such 
as various SLA (Service Level Agreement; e.g. deadline), 
dynamic resource requirement, and unexpected job submit time. 
Especially, Spark application users submit various 
requirements during the processing of big data, thus it is 
necessary for the user to provide scaling mechanism to meet 
their SLAs.   

In this paper, we propose an auto-scaling method for 
utilizing resource of Spark clusters effectively in cloud 
computing environment. The proposed auto-scaling method 
has a goal to meet user-specified deadline. Also we perform 
experiments to verify the effectiveness of the proposed scaling 
algorithm. 

This paper is organized as follows. Section 2 provides 
related work of Apache Spark and Auto-Scaling. Section 3 
presents the service architecture of auto-scaling framework. 
Section 4 explains SLA based auto-scaling algorithm and we 
discuss experiment in Section 5. Finally, we conclude in 
Section 6. 

II. RELATED WORK 

A. Apache Spark  
Spark [2] framework have emerged following existing 

Hadoop [1] framework, which was studied widely. Spark [2] 
supports distributed processing on several nodes which is 
similar to Hadoop and in-memory computing as major feature. 
Unlike Hadoop executing disk I/O for data processing, Spark 
provides in-memory computing using a new concept of data 
structure RDD (Resilient Distributed Dataset). It is useful for 
iterative execution or streaming data processing, thus it could 
derive execution result faster than Hadoop.  

References [3]–[5] are studies for efficient execution of 
Spark. H. Chen et al. [3] suggest entropy concept based 
scheduling method to provide effective and reliable services 
when it provides online parallel analysis services. Entropy 
concept is used to measure disordering of system and it 
becomes the standard of decision for reliability. They also 
utilize dynamic core performance by scheduling their resources. 
J. Yin et al. [4] are a study of optimization for parallel access in 
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big data processing. They propose a method of matching 
storage server and parallel data request, and a plan to improve 
the performance in interactive data access method. R. 
Palamuttam et al. [5] suggest weather event detection and 
tracking system using Spark. They analyze scientific 
applications applying a new data structure, sRDD (scientific 
RDD), and demonstrates a feature of data reuse between stages. 
Sidhanta, Subhajit et al. [6] propose a model of job execution 
time on Spark [2]. The model is used to estimate the 
completion time of a given Spark job according to the size of 
the input datasets, the number of iterations, and the number of 
nodes in the cluster. It also estimates the cost optimal cluster 
composition for running a given Spark job on a cloud under a 
completion deadline.  

B. Auto-Scaling  
References [7]-[8] are studies of resource auto-scaling for 

satisfying user’s requirements and efficient resource utilization. 
Kang, Hyejeong et al. [7] suggest auto-scaling method in 
hybrid cloud environment. They propose cost efficient 
scheduling method to execute scientific applications satisfying 
its deadline in private and public cloud environment. Ahn, 
Yoonsun et al. [8] are a study of auto-scaling method 
considering application pattern in hybrid cloud environment. It 
proved proper resource utilization considering job’s deadline 
and the feature of applications. References [9]-[10] are studies 
about auto-scaling scheme to effectively improve cloud 
resource usage for Hadoop big-data framework. Gandhi, 
Anshul et al. [9] propose auto-scaling method in Hadoop 
clusters. It represents a general model for execution time, tunes 
some parameters to fit in each workload, and formulates the 
estimated finish time. It shows auto-scaling method based on 
that information. Jacob Leverich et al. [10] suggest scale-down 
of clusters deploying distributed big-data processing 
frameworks method that improve energy efficiency a Hadoop 
cluster. Xueying Wang et al. [11] present an auto-scaling 
approach for Hadoop system in private cloud in order to 
improve resource utilization. Also, they consider inference 
aware scaling method in the proposed multi-layer node model 
to reduce performance damage owing to conflict from other 
services. However, there was no auto-scaling method for Spark 
[2] clusters to satisfy SLA. 

III. SERVICE ARCHITECTURE OF AUTO-SCALING FRAMEWORK 

In this section, we discuss architecture of our service 
framework. Figure 1 shows architecture of auto-scaling 
framework proposed in this paper. When a user submits a 
Spark application for execution with a given SLA (deadline). 
Spark application executes jobs using Openstack [12] as its 
resource. Openstack [12] is an open source software that 
provides large pools of compute, storage and networking 
resources used for the private cloud. It enables auto-scaling 
framework to dynamically scale resources on-demand. 

‘Auto-Scaling Service’ plays a major role of auto-scaling 
framework, providing auto-scaling by monitoring in runtime. 
First, it monitors jobs in real-time whether it satisfies SLA 
which user submitted. When it is not possible to meet user’s 
requirements, it provides the information of which application 
needs and how much it needs. This information is sent to run-

time scaling service. The Scaling service makes decision on 
requested resource of each application in current situation. 
Decision information is sent to scheduling service and 
resources are scheduled for each application. 

‘Metadata Management Service’ has aggregated information 
of jobs, resources and VM. Job metadata and resource 
metadata have information of profiling data created by 
executing jobs before. VM catalog consists of VM information 
of its cores, RAM and name. When the system needs to 
schedule resources, these information is used to check the 
satisfaction of SLA.  

 

Fig 1. Architecture of Auto-Scaling Framework 

IV. SLA BASED AUTO-SCALING ALGORITHM 

Algorithms are classified under two groups: Run-time 
Scaling (in Algorithm 1) and SLA monitoring (in Algorithm 
2). For better understanding, main notations for the algorithms 
are explained at the below: 

• AL= {a|ai, i=1, 2, …, n}  

: An application list which is running 

• D : Deadline of each application 

• RVM : Number of running VM 

• EFT : Estimated finish time  

• TT : Number of total tasks  

• ST : Start time of application 

• ,  : percentage of execution time on its stage to total 
execution time 

• SCALE_IN, SCALE_OUT = { [a, # of VM] | a  AL} 

: # of VM is amount of VM that the application wants 
to scale in or out 

: Sets of an application candidate and its VM amount to 
scale-in and scale-out 

Algorithm 1 describes run-time scaling method. It is 
invoked when both SCALE_IN and SCALE_OUT sets are not 
empty sets (line 2). When both sets have some elements, the 



algorithm determines the number of applications to apply 
scaling to in each candidate application set. The number of 
VMs added or subtracted in each set for the first application are 
added to the number of total addition and subtraction VMs 
(line 3-4). And then it continues in a while loop until VMs for 
the last application in SCALE_IN or SCALE_OUT is adjusted 
(line 5-13). In the loop, the algorithm calculates the max 
addition or subtraction of VMs while it checks the VM 
numbers to add or subtract of each set in the while loop. After 
that, it sends information of VMs and applications to scale-in 
or scale-out to resource scheduling part (line 14). It waits for 
next interval to monitor the execution situation (line 15) and 
receives information periodically whether it needs scaling (line 
16). 

 

Algorithm 1. Run-time Scaling 

Algorithm 2 shows monitoring algorithm based on SLA. It 
provides the information on which application needs how many 
VMs to scale-in or scale-out as a result. It calculates the 
number of estimated execution tasks using the number of total 
tasks, deadline for each application, execution ratio and 
execution time of that moment (line 3).  is the percentage of 
execution time on its stage to total execution time. It checks the 
number of estimated execution tasks against the number of 
processed tasks (line 4). When the condition is true, it is 
necessary to add VMs (line 6-9). And if the number of 
estimated execution tasks is smaller than the number of 
processed tasks, it requires a scale-in (line 12-15). Since EFT 
(estimated finish time) is the array of execution time according 
to the number of nodes in the cluster, index i means the number 
of nodes in the cluster. It calculates estimated finish time in 
case of applying to scale nodes (line 7, 13). It reflects the 

execution ratio of its stage and estimated finish time. And it 
determines the suitable cluster composition for finishing the 
job within user-specified deadline (line 8, 14). It returns the 
result in descending order of VM numbers in SCALE_IN and 
SCALE_OUT sets. 

 

Algorithm 2. SLA Monitoring 

V. EXPERIMENTS 

A. Preliminary Experiment  
We compared execution times according to different 

number of workers when executing the same job. The job is a 
WordCount workload using a 5GB input data set. Worker VM 
has 4 cores and 8GB RAM, and we measured total execution 
time as the number of worker VM is increased for the map 
stage, reduce stage and the whole execution represented as total 
in Figure 4. 

 

Fig 4. Execution Time for Different Number of Worker  

Figure 4 shows the execution time for 4 different number of 
workers. As the number of workers is increased from 1 to 2, 2 
to 4 and 4 to 6, the total execution time is reduced by 38%, 
45% and 16% respectively. Also, the execution time of the job 
at the map stage is shorter than that of the reduce stage. As the 
number of worker is increased, the execution time of map stage 



is reduced by 49%, 45%, 15% while that of the reduce stage is 
reduced by 31%, 44%, 21% respectively. Also in comparison, 
the ratio of execution time at the map stage relative to the 
reduce stage is 99%, 73%, 64%, and 55% respectively for the 
different number of workers. This shows that the more workers 
are added to the system, the more effectively the execution 
time of map stage is reduced. Our experiment reveals that 
scaling at map stage could get better result in execution time. 

B. Scaling Validation for Spark Clusters  
We verified the effectiveness of auto-scaling by executing a 

WordCount workload using 5GB input dataset according to 
different user-specified SLAs. The workload consists of 2 stage 
and each stage has 5278 tasks. The ratio of map stage to reduce 
stage is 1:2. We set the monitoring interval as 60s and 
preparation time as 30s. The goal is to scale the number of 
workers in the system in order to meet the user-specified 
deadline.  

 

Fig 5. Satisfying User-specified SLA with Proposed 
Scaling Method 

Figure 5 shows the performance of the proposed auto-
scaling method comparing to initial scheduling. For initial 
scheduling method, we execute an application using 1 worker 
or 2 workers. On the other hand, the auto-scaling method, 
monitoring the execution of the application, performed scaling 
dynamically to finish within the given deadline. When the 
cluster is composed of 1 worker, we assign deadline as 1700s 
and 900s. In case of 1700s, the cluster adds 1 worker and the 
graph shows finishing within 1700s in Figure 5. When the 
deadline is 900s, the application finishes within 900s by adding 
3 workers in the cluster. When the cluster has 2 workers, we 
assign deadline as 800s and 650s. The cluster adds 2 workers 
and 4 workers for each case. When the deadline is 800s, the 
system monitors how many tasks are processed at 90s for the 
first time because of the preparation time (30s) and monitoring 
interval (60s). The number of processed tasks is 230 and the 
number of estimated execution tasks calculated by the 
algorithm is 1187. Since the number of executed tasks are 
smaller than estimated execution tasks, it requires a scale-out. 
The algorithm determines the number of VMs to scale-out 
using profiling data of execution time on different number of 
worker VMs. If the cluster has 4 worker VMs, estimated finish 
time is 611s. On the other hand, the application can finish in 
536s using 6 worker VMs. As the difference between the 

deadline and execution time is 710s, the plan of using 4 VMs is 
selected. And they finish their application within each deadline. 
Therefore, all cases are successfully finished within user-
specified deadline using auto-scaling method.  

VI. CONCLUSION AND FUTURE WORK 

With the exponential increase in the amount of data, more 
and more people have resulted to the use of Spark clusters to 
analyze big data. In the proposed scaling framework, Spark 
clusters facilitate the dynamic utilization of resources in virtual 
environments. In this paper we propose the auto-scaling 
framework with corresponding algorithms. The algorithms 
determine scaling decision and it calculates how many VMs to 
scale-in or scale-out. Our experimental results of deploying 
Spark clusters on OpenStack demonstrate the efficiency of 
auto-scaling for executing Spark clusters. In the future, we 
intend to research scale-out experiment to verify the 
effectiveness of auto-scaling in Spark clusters.  
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