
Application-aware Traffic Management for
OpenFlow Networks

Seyeon Jeong, Doyoung Lee, Junemuk Choi, Jian Li and James Won-Ki Hong

Department of Computer Science and Engineering, POSTECH, Korea.
{jsy0906, dylee90, juk909090, gunine, jwkhong}@postech.ac.kr

Abstract—Software-Defined Networking (SDN) is an emerging
networking paradigm aims to improve network management
flexibility and efficiency. OpenFlow is the popular SDN de-facto
standard, which has been prevalently adopted by both academia
and industry for research and development purpose. OpenFlow
provides rich programmable interface to network administrator
to ease traffic monitoring and control. Because OpenFlow sup-
ports L4 network stack, it is feasible to provide application level
traffic control by specifying TCP/UDP port number in flow rules.
The major deficiency of the port-based traffic control is that
it only provides the ability to control traffic from applications
which have well-known TCP/UDP port numbers. In the case of
port number change or dynamic (ephemeral) port allocation to
an application, it is difficult to accurately control the application
traffic. To be a solution, we propose an application-aware traffic
management method by integrating Deep Packet Inspection (DPI)
function with SDN controller. To show the feasibility, we design
and implement Firewall and Bandwidth Manager applications
based on the proposed management method. The applications
perform on top of ONOS [1] controller, and FTP rate control
example is shown to prove the feasibility of the proposed flow
management method.

Keywords—Software Defined Network, DPI, Traffic Manage-
ment

I. INTRODUCTION

Nowadays Internet has become an essential element in our
lives. People can use Social Network Service (SNS) and check
their e-mail anytime and anywhere using Internet. Along with
its influence, network technology also has advanced dramati-
cally. However, still many deficiencies should be improved in
the network area. For example, current networks consist of a
huge number of network devices with a different specification
and interface protocol for each vendor. It means that a network
administrator should learn and follow the individual protocols
to change a network policy or configuration. It also implies an
impediment to network agility.

As the scale of Internet grows, traffic management becomes
an important issue. Networking services require as much as
possible bandwidth for their performance. Performance of
video streaming service or file transfer application gets better
as allocated bandwidth becomes larger while other traffic loses
its allowance in the restricted resources. Thus, mediating those
demands is an important role of a network operator to improve
Quality of Service (QoS). There has been several literature
work on traffic management to improve QoS. Wang et al.
proposed an application oriented traffic management solution
[2], while Sezer et al. introduced another traffic management
approach [3] by controlling behavior of application traffic.

In order to improve the flexibility and management prob-
lems in traditional networks, SDN has been introduced. One of
the important concepts of SDN is that it separates control plane
and data plane which are combined in a traditional network
device. Data plane consists of switches and routers which are
dependent on control plane’s decision about how to handle or
forward packets. SDN controller, as a representative entity of
the control plane, manages and monitors data plane entities
in a centralized manner. To accomplish these roles, a demand
for standard communication between a controller and switch
resulted in the release of OpenFlow protocol [4] as a de-facto
standard for SDN.

Traffic management can be implemented by either drop-
ping packets or adjusting packet output rate of switch ports.
The most representative use cases of traffic management are
firewall and traffic shaper. With rich management features
provided by OpenFlow, realizing traffic management functions
in OpenFlow-based network could be much simpler than that
of traditional network. In practice, traffic management in Open-
Flow network is performed per application (service), and it can
be realized by inserting flow rules with specific TCP/UDP port
numbers. For example, to control HTTP traffic, we can insert
a flow rule with TCP port number 80 and required action sets
to the flow. The main deficiency of traffic management based
on port numbers is that it only provides the ability to control
traffic from applications which have well-known port numbers.
In the case of port number change or dynamic (ephemeral) port
allocation to an application, it is difficult to run the scheme.
To resolve this issue, in this work, we propose an application-
aware traffic management method by integrating Deep Packet
Inspection (DPI) function with OpenFlow controller. The main
idea of the proposed management scheme is that we classify
application traffic using off-platform DPI instances, and feed
the classification result into OpenFlow controller to correlate
the result with flow rules in order to accurately control specific
application traffic. Since by far DPI is one of the most accurate
ways to classify application traffic, the proposed management
scheme can also provide precise traffic management capability
in OpenFlow networks. To show the feasibility of the pro-
posed management scheme, we design and implement two
representative applications - Firewall and Bandwidth Manager
based on the proposed management scheme. With those two
applications, the network administrator can specify the list of
applications (traffic) that he wants to block or forward, and
required upper bound of transmission rate for the applications.

To evaluate performance of the proposed management
scheme, we chose ONOS [1] as a reference SDN controller
to implement the applications. ONOS is a distributed SDN

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016 

 



controller motivated by performance, scalability, and availabil-
ity requirements for large operator networks. ONOS has being
considered one of the most promising SDN controllers due
to its flexible programmability and rich core APIs. In terms
of programmability, it supports OSGi-based framework allow-
ing administrators to run controller applications selectively
according to their policy. It also offers core APIs on each
SDN component based on its well-defined architecture. We
implemented Firewall and Bandwidth Manager as an ONOS
application and evaluated their feasibility by showing the use
case of controlling transmission rate of FTP traffic.

The remainder of this paper is organized as follows. Section
II presents related work and background. In section III, the
detailed design and implementation of the proposed scheme
are described. Performance testing is shown at section IV and
we conclude this paper at section V.

II. RELATED WORK

A. SDN Controller

Since the concept of SDN emerged, a large number of SDN
controllers have been introduced. OpenDaylight (ODL) [5] fea-
tures multiple South Bound Interface (SBI) support as a plugin.
With the SBI support, ODL application developers can focus
on implementing controller applications without knowledge of
the protocol specifics. Ryu [6] is a component-based SDN
controller which is written in Python. Ryu provides software
components with well-defined APIs. It allows developers to
create new applications for the purpose of controlling and
managing the underlying network. Floodlight [7] is a Java-
based OpenFlow controller. It offers a module loading system
to extend and enhance the controller more easily.

B. Traffic Management in SDN

There are many researches on traffic management exploit-
ing SDN features. FlowGuard [8] is a SDN-based firewall that
provides control over traffic in a packet or flow level. It also
considers and avoids possible flow rule collisions in installing
a new flow rule under a certain firewall policy. It seems to
be a more advanced and compatible firewall implementation
with SDN architecture than other built-in firewalls in existing
open source controllers. However, it does not support any
application or protocol-level functionalities based on traffic
classification.

As an effort to the application-aware SDN, M Jarschel
[9] proposed an application buffer-based traffic engineering
on YouTube traffic over an OpenFlow network. The research
showed that performance improvement coming from multi-
path routing for the traffic but it has a limitation on the specific
application traffic, YouTube.

In Atlas [10], Zafar Qazi presents a self-contained
application-awareness system over SDN using machine learn-
ing approaches rather than DPI. The system applies a machine
learning algorithm to classify application traffic from the
packets stored in the switch buffer. However, it cannot control
transmission rate of a specific application traffic in a fine
grained manner. It just adjusts drop precedence of packets
according to a service type group.

Meter table and Meter band are most recent QoS related
extensions since OpenFlow 1.3. They can be used to limit
packet transmission rate of OpenFlow switch ports. A meter
band specifies an upper bound of transmission rate and a set of
actions to be performed for associated flows once they exceed
the specified rate limit [11]. A meter table stores a collection
of meter bands and selects one of the bands with the highest
rate lower than the measured rate for the associated flow [12].
We used these features in our scheme to implement the rate
limit function more effectively.

Fig. 1. ONOS Architecture

C. ONOS Architecture

Our proposed system allows OpenFlow-based network
to apply firewall and rate limit policies to incoming traffic
depending on its application or protocol. An application name
of a flow is identified by either TCP/UDP port number or DPI
result on it. Policies related to each network function can be
specified in a predefined format by a network administrator
through a web-based user interface for policy management. In
Fig. 1, the App component on which our system is placed has
an interface to receive a certain packet header or aggregated
information of flows such as OpenFlow Packet-In messages,
flow or meter statistics from each Manager component. The
Manager component implements one of core SDN abstractions
such as Flow, Topology, Routing and so on. The Provider
component stands for a SBI implementation such as OpenFlow.
The App component (ONOS application) decides network
policies depending on its desirable functions using data,
queries and commands from each Manager component. These
network policies should be divided and translated into related
commands for each Manager component. Then the commands
are delivered to the OpenFlow Provider component which
constructs desirable flow rules to be installed into the underly-
ing switches in order for actual deployment of the network
policies. The layered architecture of ONOS provides more
flexible programmability on SDN to application developers.

III. DESIGN AND IMPLEMENTATION

In this section, we introduce the design and implementation
of the proposed system. The architecture of the system shows
up in the Fig. 2. Traffic Management System which includes
Firewall and Bandwidth Manager is an ONOS application. The
system also utilizes DPI instances. Most simple way to run
DPI over a network is placing a packet mirroring machine in



front of each ingress switch to copy packets for DPI and relay
original packets to the switch at the same time. However, in
our approach, we assume that the ingress switch is a high-
end general purpose machine whose performance is enough
to deploy DPI and OpenFlow switch functions in itself and
each of them does own work in order on incoming packets
[13]. This assumption can imply the use of network function
virtualization concept and lead to flexible operation of the
system by using OpenFlow features of the switch. For example,
DPI offloading is applicable based on flow rules to distribute
traffic across multiple DPI instances. When a new flow arrives
at an ingress switch, DPI function on the switch performs DPI
and then sends the result (application name of the flow) to
the system by using REST API. Based on the architecture
and other OpenFlow features described in the implementation
section later, Traffic Management System can perform traffic
management in terms of how much transmission rate should
be limited to a certain flow and whether the flow should be
forwarded or not. Those decision makings conform the firewall
and rate limit policies which can be specified by a network
administrator using the user interface implementation based
on ONOS web UI.

Controller

BW
Manager

managed
flow rule setup

External 
DPIs 

(on each edge 
switch)

1st packet 
of flow

host A

host B

Traffic classifier

Traffic management system

Firewall… …

following
packets

Fig. 2. Overview of Application-aware Traffic Management System

A. Testbed Setup

In our implementation, we use Mininet [14] to emulate an
OpenFlow-based network equipped with single ONOS con-
troller. We deploy several Ofsoftswitch13-CPqD [15] instances
as OpenFlow software switches on the testbed to utilize the
OpenFlow Meter table implementation. nDPI [16] as a DPI
instance of the system is an open source DPI library capable
of inspecting over 200 application protocols with high accuracy
while it can operate as a standalone DPI box. Each nDPI
instance operates on an ingress switch and if any request from
the system occurs, it returns the DPI result of current incoming
flow with a timestamp. Their communication is based on REST
API. In the following sections, we elaborate on two network
functions in the system, Firewall and Bandwidth Manager,
including their functional requirements and interfaces with
other components of the system.

B. Firewall

Generally, for OpenFlow based network in the reactive
mode [17], there would be no corresponding flow rules in a
switch when a new flow comes in. In this case, an OpenFlow
Packet-In message containing header values from layer 2 to
layer 4 of the first (arrived) packet of the flow is deliv-
ered to the connected controller from the switch in order to

conform a policy descision. After that, the controller parses
the message and extracts information about the packet such
as source/destination IP addresses, TCP/UDP port numbers
and protocol identifier to decide a routing path. Firewall in
our traffic management system (Fig. 3) utilizes this 5-tuple
information of the flow to identify an application protocol
by comparing it with the internal well-known port number
table (port-based classification). If it does not have a well-
known port number due to port number chagne or dynamic
port allocation, Firewall requires the DPI instance to report
a DPI result including application or protocol name of the
flow. To deliver the DPI result, REST API is used between
them (DPI-based classification). Specifically, from the Fig.
2, all the flows generated from a host should pass the DPI
instance (function) deployed in the connected ingress switch
(function) machine so that the instance can analyze a flow
and send an application or protocol name of the flow to the
system with a timestamp. After that, the Firewall compares
the 5-tuple information from the initial Packet-In message to
the DPI result with the timestamp consideration for accuracy.
Therefore, support for synchronous DPI request/response is
needed for the comparison process in spite of delay increase.
Finally, by using one of the two approaches, port or DPI-
based classification, Firewall can be aware of an application or
protocol name of the flow, so it can handle the identified flow
according to a corresponding (matching) policy after scanning
the firewall rule table.

Classifier

DPI processor

FW table scan

Flow rule setup 
decision

ONOS 
(Controller)

OF Packet-In

drop / forward / missif well known port #
: 5-tuple + protocol

if not
: request DPI

Edge 
Switches

Firewall

External 
DPIs

DPI 
Req./Resp.

REST API 

inspecting interfaces on 
each switch

5-tuple + app. 
name

install drop action

BW 
Manager

Src. IP Dst. IP Src. port # Dst. port # App. name Action

10.0.0.1 10.0.0.2 * 20 ftp-data drop

Fig. 3. Design of Firewall

Firewall maintains a firewall rule table created by a network
administrator. The specification of a firewall rule consists
of <source IP address, destination IP address, source port
number, destination port number, application name, action>.
If a firewall rule requires a certain flow to be blocked, Firewall
asks for the controller to drop all the packets of the flow, and
then the controller sends a OpenFlow Flow-Mod message to
the ingress switch to install a flow rule for drop of the packets.
Consequently, flows under the policy cannot enter the network
anymore from the ingress switch. Meanwhile, flows allowed
to enter the network according to related firewall rules can be
handled by the next management stage, Bandwidth Manager.

C. Bandwidth Manager

Bandwidth Manager in the Fig. 4 stores rate limit rules
as a table as Firewall does. Each rule is composed of 5-tuple
information, application or protocol name, and transmission



ONOS 
(Controller)

Dynamic rate 
limiter

Switches

hit 
(rate limit)

miss
(no rate limit)

BW manager

Firewall

5-tuples, app type
of flow

flow rule setup

Rule setup 
decision

Src. IP Dst. IP Src. port Dst. port App. name Rate limit Action

10.0.0.1 * 12345 * youtube 1 Mbps drop

BW table scan

Fig. 4. Design of Bandwidth Manager

rate limit values (in Mbps) for a flow. An administrator can
fill up the specifications through the web-based user interface
in the Fig. 5. Bandwidth Manager performs traffic management
by restricting transmission rate of flows. If there is a rate limit
rule for a certain (identified) flow in the rule table, Bandwidth
Manager installs related flow rules into switches on the routing
path of the flow to be decided by Routing component of ONOS
controller after this stage. Each of the flow rules is associated
with several OpenFlow Meter bands. The Meter bands stand
for the specified transmission rate limit values above and force
the corresponding flow to be forwarded from the switches at
a lower rate than the specified value, such as 100 Mbps or 0.5
Mbps.

The controller requires each switch to report meter and flow
statistics periodically and then relays each report to Dynamic
Rate Limiter in Bandwidth Manager. Each entry of meter
statistics consists of meter id associated with certain flow
rules and the total number of packets and bytes affected by
the metering. Dynamic Rate Limiter can change the currently
applied meter band dynamically according to the flow statistics
of the metered flow. For example, on a link with 100 Mbps
capacity, suppose there are several in-flight flows with a 30
Mbps average throughput and the number of packet drops due
to associated meter bands is excessive. Then, it is obvious that
too many packet drops occur unnecessarily under the current
30% link utilization. Thus, the Dynamic Rate Limiter can
conclude that the currently applied meter bands decrease QoS
of the in-flight flows excessively. Therefore, the Dynamic Rate
Limiter decides each of the flows should be affected by a larger
meter band. Because a network administrator can register
several meter bands for a certain flow, the limiter can select the
larger one and replace the old meter with the new larger one
by sending the OFPT METER MOD messages to the related
switches while it notifies the changes to the administrator.
Computation on the link utilization after the adaptation also
should be considered. This operation is implemented with the
help of OpenFlow Meter table, Meter band and meter/flow
statistics.

Finally, flow rules to apply firewall and rate limit rules for
the flow should be installed into the switches on the routing
path. The flow (traffic) then moves around the network under
the intended policies from the administrator.

Fig. 5. Web GUI

IV. EVALUATION

To evaluate our proposed system, we constructed the sys-
tem on a Mininet testbed emulation by using a hardware server
equipped with hexa-core 2.67GHz Intel Xeon CPU and 20 GB
of RAM. Both the sender and receiver host were connected
with the OpenFlow-enabled software switch (Ofsoftswitch13-
CPqD [15]). The switch had flow rules to apply firewall and
rate limit policies on certain flows from the connected ONOS
controller. A DPI instance (nDPI [10]) located in the same
machine with the switch inspected packets back and forth
between the two hosts and sent the results to the system.
Evaluation scenario was as follows; 1) First, we established
a FTP session between two hosts. We observed that FTP
control packets with the TCP port number 21 were identified
by the well-known port number table in the system and then
the ONOS controller installed related flow rules for the flow
into the switch. 2) Sender host started to transmit a 100 MB
dummy file over the established FTP session. Chunks of the
file were encapsulated in several FTP data packets with the
TCP port number 20, but in this case, simply for checking
the functionality, the system was modified to identify them
after receiving the DPI result indicating that the flow is FTP
data packets rather than retrieving the well-known port number
table. 3) After 10 seconds from the beginning of transmission,
we applied a rate limit policy up to 0.5 Mbps for the flow
(ftp-data) and then changed the limit value to 0.2 Mbps at the
20 second. In the Fig. 6, measured throughput at the receiver
host was about 1.2 Mbps without rate limit during the first 10
seconds. The new 0.5 Mbps rate limit was applied at the 10
second but it took effect on about 2.5 seconds later. Similarly,
the effective time for the 0.2 Mbps rate limit was observed
at the receiver host 2.5 seconds later. We could estimate that
the major reason of the delay was caused by the amount of
time to process the flow inside the system including additional
blocking time for receiving the DPI result over REST API.
The delay was enough time for the consecutive packets of the
flow to saturate the buffer of the switch right before the actual
effect of the rate limit. This condition could give unexpected
high throughput measurement at the receiver host during a few
seconds. The delay can vary with complexity of the network
and throughput measurement program.

Current OpenFlow Meter table implementation supports
simple packet drop and adjustment of drop precedence by



Fig. 6. FTP Throughput Measurement

marking the DSCP field in the IP header for the excessive
packets [12]. In our evaluation, we used the simple packet drop
scheme and observed repeated patterns that once measured
throughput at a moment had been larger than applied rate
limit value (meter), next measurement decreased temporarily
according to packet drops of the excess, and then it recovered
up to the limit value again.

V. CONCLUSION

In this paper, we have proposed the application-aware
flow management system including two network functions,
Firewall and Bandwidth Manger. The system is implemented
as an ONOS application interacting with DPI instances for
traffic classification. In the OpenFlow-based network operating
in the reactive mode, when a switch has no flow rules for
a newly incoming flow, it sends a Packet-In message with
header values of the first packet of the flow to the connected
controller. The controller then checks the header values to
decide a routing path of the flow. By using this characteristic,
we developed Firewall which is responsible for determining
whether the switch should block or forward the flow. If the
header information is not enough for the flow to be classified as
a certain application traffic, it sends a request for DPI analysis
of the flow to connected DPI instance. Similarly, Bandwidth
Manager can use the same information about the flow to apply
a rate limit policy in order to restrict bandwidth of a certain
flow and guarantee more bandwidth for other preferable flows
in the given link capacity. Therefore, the proposed system can
manage network traffic over SDN at a lower cost compared
with traditional approches for the same function but more
overheads such as packet redirection to a DPI box and traffic
conditioner.

Although, the major functions of the system work well
in the simple testbed in the evaluation, there are rooms
for improvements. Particularly, a testing on a large network
with more complex topology and diverse traffic should be
performed in terms of scalability. More various policies from
network administrators also should be considered in terms of
compatibility.

For the future work, we will further improve the rate limit
function to operate more wisely based on current network con-
dition. It may include additional algorithms to select optimal
rate limit policy adaptively and more tuning parameters for
Dynamic Rate Limiter in the Section 3.

ACKNOWLEDGEMENT

This work was supported by the ICT R&D program of
MSIP/IITP, Republic of Korea. [B0190-15-2011, Korea-US
Collaborative Research on SDN/NFV Security/Network Man-
agement and Testbed Build]

REFERENCES

[1] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[2] W.-H. Wang, M. Palaniswami, and S. H. Low, “Application-oriented
flow control: fundamentals, algorithms and fairness,” Networking,
IEEE/ACM Transactions on, vol. 14, no. 6, pp. 1282–1291, 2006.

[3] S. Sezer, S. Scott-Hayward, P.-K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready
for sdn? implementation challenges for software-defined networks,”
Communications Magazine, IEEE, vol. 51, no. 7, pp. 36–43, 2013.

[4] Open Networking Foundation., OpenFlow Switch Specification Version
1.0.0, Std., Dec. 31, 2009.

[5] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven sdn controller architecture,” in 2014 IEEE 15th Inter-
national Symposium on. IEEE, 2014, pp. 1–6.

[6] “Ryu: Component-based software defined networking framework.”
[Online]. Available: http://osrg.github.io/ryu/

[7] “Floodlight: Open source software for building software-defined net-
works.” [Online]. Available: http://www.projectfloodlight.org/floodlight/

[8] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “Flowguard: building robust
firewalls for software-defined networks,” in Proceedings of the third
workshop on Hot topics in software defined networking. ACM, 2014,
pp. 97–102.

[9] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “Sdn-
based application-aware networking on the example of youtube video
streaming,” in Software Defined Networks (EWSDN), 2013 Second
European Workshop on. IEEE, 2013, pp. 87–92.

[10] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application-awareness in sdn,” in ACM SIGCOMM Computer Com-
munication Review, vol. 43, no. 4. ACM, 2013, pp. 487–488.

[11] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “Policycop:
an autonomic qos policy enforcement framework for software defined
networks,” in Future Networks and Services (SDN4FNS), 2013 IEEE
SDN for. IEEE, 2013, pp. 1–7.

[12] P. M. Mohan, D. M. Divakaran, and M. Gurusamy, “Performance study
of tcp flows with qos-supported openflow in data center networks,” in
Networks (ICON), 2013 19th IEEE International Conference on. IEEE,
2013, pp. 1–6.

[13] T. Wood, K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “Toward
a software-based network: integrating software defined networking and
network function virtualization,” IEEE Network, vol. 29, no. 3, pp. 36–
41, 2015.

[14] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[15] “Ofsoftswitch13-cpqd openflow 1.3 software switch.” [Online].
Available: https://github.com/CPqD/ofsoftswitch13

[16] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “ndpi: Open-
source high-speed deep packet inspection,” in Wireless Communications
and Mobile Computing Conference (IWCMC), 2014 International.
IEEE, 2014, pp. 617–622.

[17] M. P. Fernandez, “Comparing openflow controller paradigms scalability:
Reactive and proactive,” in Advanced Information Networking and
Applications (AINA), 2013 IEEE 27th International Conference on.
IEEE, 2013, pp. 1009–1016.


