
Policy-based Verification Method for Configurations
of Large Network with Header-space Analyses

Toshio Tonouchi
System Platform Research Laboratories, NEC

Abstract— Configuration of network is getting complex

because the network has been equipped with much functionality.
Meanwhile, the network should satisfy many requirements for
sophisticated multi-tenancy, high-level security and so on. For
example, a flow which should be secure has to go through a
firewall. However, it is difficult for an operator to verify whether
the configuration in large network can satisfy these requirements.
The verification takes a lot of time and a lot of human work. In
addition, the human operator may inherently overlook an
erroneous configuration. In this paper, we propose a policy
language, which can specify the requirements. We also propose
two implementation designs of the policy language. The one of
the methods is estimated to verify the configuration of larg
network.

Keywords—Network Configration, Verification, Header Space
Analysis, Policy

I. INTRODUCTION
Configuration of network is getting complex because

network has been equipped with much functionality. For
example, in a network having virtual networks behind a
firewall, the configuration of the firewall and the virtual
networks should be consistent. An inconsistent configuration
may cause the unreachability among the firewall and virtual
networks.

Meanwhile, the network should satisfy many requirements
for sophisticated multi-tenant network, high-level security and
so on. For example, flows for a customer should not share the
same network with the different customers. A network
operator has to verify whether the configurations satisfy the
requirements, but it is difficult for an operator to manually
verify it. It takes a lot of time and a lot of human work. As a
result, the human operator may inherently overlook an
erroneous configuration.

In this paper, we propose a policy language which can
specify the requirements. We also propose a verification
method, which can automatically verify whether the network
configuration satisfies the requirements given in the policy
specifications. The operator can specify requirements in the
policy specifications. We also show the design of a
verification tool, which reads the policy specifications, gets the
configuration of the network elements, and verifies whether the
given policy is satisfied in the network.

The contributions of this paper are follows:

l We defined a new policy language based on the well-
known first-order predicate logic. We expect that a
lot of operators are familiar to the policy language.

l We show two types of implementation designs of the
verification tool by using the existing methods [1] [4].
Through performance estimations, we show the one of
the methods is suitable for the verification of large
network.

II. RELATED WORK
HSA [1] models a flow table as so-called a transfer

function, and calculates the function for a header of flow at a
switch port. A packet header consists of a list of attribute-
value pairs. The value can be a set value. For example, the
value of Attribute “ipv4_dest” can be “10.20.30.*”. In short, it
can handle a bit sequence in which some bits may be wild
cards. This header is called a header space.

In HSA, Transfer function τ௣೔: 𝑃→ 𝐻 is defined for an
input port 𝑝௜∈ 𝑃. The domain of τ௣(𝑝′) is whole the header
space goes from Port 𝑝 to Port 𝑝′ in a switch. τ௣(𝑝′)൫ℎ௣൯
means the header space at Output port 𝑝′ of a flow incoming
from Port 𝑝 with Header Space ℎ௣. We can also calculate the
header space of a flow which goes through the several switches.
For example, in the sequence of the switches in Fig. 1, we can
calculate Header Space τ௣೙(𝑝௢) at Port 𝑝௘ from Port 𝑝௜with
Header Space ℎ௣೔ can be τ௣೙(𝑝௢) = τ௣೙(𝑝௢) ∘ ⋯ ∘ τ௣భ(𝑝ଶ) ∘τ௣೔(𝑝଴)(ℎ௣೔).

The calculation time of HSA is the cube of flow entries for
calculating the header spaces for whole switch ports in the
network [4]. As a result, HSA cannot apply a large scale
network.

NetPlumber[2] uses HSA and verify the network

configuration. It provides a policy language called FlowExp.
The operator can specify requirements in FlowExp.
NetPlumber checks, in start-up time and runtime, whether the
network satisfies the requirement written in FlowExp.

As mentioned before HSA is not so fast for the runtime
verification. NetPlumber uses an incremental checking
approach in order to make verification time shorter. Firstly,
before the runtime verification, it calculates header spaces and
stores the calculation result into a so-called plumbing graph.
The plumbing graph has the same topology with the physical
network to be verified. NetPlumber uses these calculation
results in the plumbing graph, and can firstly verify the

Fig. 1 Architecture of Verification tool

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

network. Secondly, NetPlumber maintains the plumbing graph
when a flow entry is added / modified / deleted. This is the
reason why it is call an incremental checking approach.

The incremental checking approach is effective after the
initial calculation has finished, but it is not effective when the
verification right after the network is constructed. NetPlumber
has to make a plumber graph for the newly constructed
network, and it takes a lot of time.

B-HSA[4] has less powerful expression power than HSA,
but it can calculate the header spaces of whole switch ports in
the network faster than HSA. HSA calculates the header
spaces of a flow, while B-HSA calculates the header spaces of
the whole network at once. B-HSA can re-use the calculation
results which were calculated in other flows. This is the reason
why B-HSA is faster than HSA. However, B-HSA cannot
calculate the header space of each flow. This is a disadvantage
of B-HSA.

B-HSA can be expressed as two functions: β௜௡: 𝑃→ 𝐻 and β௢௨௧: 𝑃→ 𝐻. β௜௡(𝑝) represents the union set of whole header
spaces at Port 𝑝 of incoming flows. β௢௨௧(𝑝) represents the
union set of whole header spaces at Port 𝑝 of outgoing flows.

B-HSA does not have a policy language while HSA has a
NetPlumber with FlowExp. In this work, we propose the
designs of the policy language for B-HSA and the verification
tool. It can verify network efficiently because B-HSA is used.

VeriFlow[3] is a verifier which uses a different calculation
approach as well as NetPlumber. This verification tool is the
proxy of the OpenFlow controller. It is placed in the control
link between the controller and each OpenFlow switch.
VeriFlow monitors OpenFlow packets, and detects an event of
add / modify / delete of a flow entries. When it finds the event,
it, then, verifies the network. Veriflow verifies the network
fast, but it can be only used in OpenFlow network. Most of
network has legacy network elements. We should verify the
whole network including legacy network elements.

Frenetic [5] is a declarative specification language for
OpenFlow controller. It can define the network configuration.
The operator can compose elements of Frenetic specifications,
and define the whole network. The operator can write a
network configuration with this declarative specifications more
easily and correctly than the procedure-based controller
program, such as POX[7] , NOX[6], Flood Light[8] and so on.

NetKat[9] is a formal specification language for OpenFlow
controller. The correctness of the language is mathematically
proved. However, it is a different issue that a programming
language is correctly designed from the configuration of the
network satisfies the requirements.

III. POLICY-BASED VERIFICATION TOOL

A. Approach
The goal of this work is to verify whether the large-scale
network satisfies the requirement written in the policy
language or not. In order for a fast verification, we use B-
HSA as well as HSA. The architecture is shown in Fig. 2.
The inputs are a policy and, flow tables and the topology of
the network. Translator translates a policy into a set of

propositions. Checker calculates header spaces with B-HSA
and HSA if necessary, and checks the propositions.

B. Examples of Policy
We give three examples of policy specifications.
l Example 1. Flow in subnet A should be with

vlan_id=100. The network is shown in Fig. 3.

“inhd(p)” means the header space at Port p.

l Example 2. Flows through Subnet A must go through

the firewall in Fig. 3.

“iflow(p < ports < port(“fw2_2”))” means that the incoming
flow at Port p has to go through Port “fw2_2”. “ports” means
any path between Port p and Port “fw2_2”.

l Example 3. A flow coming from the gateway in Fig.

4 goes through an SSL-VPN gateway or an IPSec-
VPN gateway.

Fig. 2 Architecture of Verification tool

ports_in_ nw_A = (port(“p_a1”), port(“p_a2”));
forall p in ports_in_ nw_A {
 inhd(p) ⊂ [vlan_id=100],

outhd(p) ⊂ [vlan_id=100];
}

forall p in ports_in_ nw_A {
 iflow(p < ports < port(“fw2_2”)) ;
}

Fig. 3 Sample Network

oflow(port(sw4_1) > ports >(sslvpn|IPvpn));

C. Syntax of Policy Language
We give the abstract syntax of the policy language in BNF.

D. Semantic of Policy Language
We give the semantic of the policy language. Non-terminal
symbols from [start] to [prop] represent the first-order logic,
and, therefore, the semantic is well known and clear. Non-
terminal symbol of [set_value] represents the set theory, and
the semantics is also clear.
We have to show, in this paper, the semantics of [atomicProp]
and inhd and outhd functions.
l inhd(p) is the union of header spaces of whole flows

which go into Port p.
l outhd(p) is the union of header spaces of whole flows

which go out of Port p.
l [exp] in “[exp] ⊂ [exp]” can be [header_val]. “[exp] ⊂

[exp]” is, therefore, represented as “[header_val1] ⊂
[header_val2]”. This holds if and only if each attribute
value in [header_val1] is a subset of the attribute value of

[header_val2].
We consider that “[attr1=v1]” has attribute other than
“attr1”, whose values are universal sets. Therefore,
“[attr1=v1] ⊂ [attr1=v1, attr2=v2]” is true because the
formula is considered as “[attr1=v1, attr2=any]⊂ [attr1=v1,
attr2=v2]”.

l iflow(p1 < p2 < … < p3) holds if and only if the flow
which reaches Port p1 goes through p3, …, p2, and p1.
For example it is false if some flow from p1 does not go
through p2.

l oflow(p1 > p2 > … > p3) is true if and only if any flow
from p1 goes through p2, …, and p3.

l “p1 < ports < p2” and “p2 > ports > p1” represent any
flow from p2 to p1.

E. Implementation Designs of Policy Language
We show the implementation designs of the policy language.
Implementation of the part of the first order logic and the part
of the set theory is clear. The implementation of “[exp] ⊂
[exp]” is also clear. We do not mention the implementation
designs of these features in this paper.
We have to show the implementation designs of inhd, outhd,
iflow, and oflow.
l oflow(p0>p1>p2> …>pn>pe), which we call Prop. A,

holds if only if 𝐝𝐨𝐦ቀτ௣బ(𝑝ଵ)ቁ⊇ 𝐨𝐮𝐭𝐡𝐝(𝑝௢) and 0 <∀i < n. 𝐝𝐨𝐦ቀτ௣೔శభ(𝑝௜ାଶ)ቁ⊇ τ௣೔షభ(𝑝௜) ∘ ⋯ ∘τ௣భ(𝑝ଶ)(𝐨𝐮𝐭𝐡𝐝(𝑝௢)) , which we call Prop. B, holds,
where 𝑝௘ = 𝑝௡ାଵ and dom(f) is the domain of Function f.
Ø We firstly prove that Prop. A → Prop. B. From

Prop. A, this flow goes through pi+1 and pi+2 for any i.
Then, ∀i. 𝐝𝐨𝐦ቀτ௣೔శభ(𝑝௜ାଶ)ቁ⊇ ℎ௣೔శభ holds.
Notice that we can calculate Header Space ℎ௣೔ as ℎ௣೔శభ = ℎ௣೔= τ௣೔షభ(𝑝௜) ∘ ⋯ ∘τ௣భ(𝑝ଶ)(𝐨𝐮𝐭𝐡𝐝(𝑝௢)). Then Prop. A holds.

Ø Finally, we show Prop. B → Porp. A. For any i, the
flow with Header Space ℎ௣೔= ℎ௣೔శభ goes through
pi+1 and pi+2 because ∀i. 𝐝𝐨𝐦ቀτ௣೔శభ(𝑝௜ାଶ)ቁ⊇ℎ௣೔శభfrom Prop. B. Then, the flow with 𝐨𝐮𝐭𝐡𝐝(𝑝௢)
goes through p0>p1>p2> …>pn>pe. Then Prop. A
holds if Prop. B holds.

l iflow(p0<p1<p2<…<pn<pe) holds if only 0 < ∀i <n. 𝐝𝐨𝐦ቀτ ଵି௣೔శభ(𝑝௜ାଶ)ቁ⊇ τ ଵି௣೔షభ(𝑝௜) ∘ ⋯ ∘τ ଵି௣భ(𝑝ଶ)(𝐢𝐧𝐡𝐝(𝑝௢) . τ ଵି௣೔శభ(𝑝௜) is the inverse
function of τ௣೔(𝑝௜ାଵ) . In short, τ ଵି௣೔శభ(𝑝௜) ∘τ௣೔(𝑝௜ାଵ)൫ℎ௣೔൯= ℎ௣೔ and τ௣೔(𝑝௜ାଵ) ∘ τ ଵି௣೔శభ(𝑝௜)൫ℎ௣೔శభ൯= ℎ௣೔శభ.

l We propose two implementation designs of outhd and
inhd. Firstly we implement them as B-HAS functions.
[Design 1]. In short, outhd(p) ::= β௢௨௧(𝑝) and
inhd(p) ::= β௜௡(𝑝). We calculate the header spaces of all
ports in the network before the policies are checked.

Fig. 4 Sample NFV Network

/**** First-order predication ****/
[start] ::= ([dec] “;” | [pred] “;”)* ;
[pred] ::= “forall” [var] “in” [set_value] [pred]“;”
 | “exists” [var] “in” [hostSet] [pred]
 | “{“ [pred] “}” | [prop];
[prop] ::= [atomicProp] | [prop] “,” [prop] | [prop] “|”

[prop]
 | “(“ [prop] “)”;
[dec] ::= [var] “=” [val] “;”
[val] ::= [direct_value] | [set_value];
[direct_value] ::= [header_val] | [port];

/**** Set ****/
[set_value] ::= [set_value] “&” [set_value]

 | [set_value] “+” [set_value]
 | “(“ [port](“,” [port])* “)” ;

/**** Proposition ****/
[atomicProp] ::= [exp] “⊂” [exp]

| iflow([flow]) | oflow([flow]) ;
[exp] ::= [header_val] | [var] ;
[header_val] ::= inhd([port]) | outhd([port])
 | [header]
[iflow] ::= [port] (“<” [portexp])* “<” [port];
[oflow] ::= [port] (“>” [portexp])* “<” [port];
[header] ::= “ [“ (attr_name “=” value)* “]”
[port] ::= [var] | port “(“ str “)” | ports

l Second one uses HSA transfer function [Design 2].
outhd(p) ::= ⋃ τ௤(௜ି ଵ)൫𝑞(𝑖)൯∘ ⋯ ∘௤∈𝒐𝒖𝒕_𝐩𝐚𝐭𝐡𝐬(௣)τ௤(଴)൫𝑞(1)൯൫𝐨𝐮𝐭𝐡𝐝(𝑝)൯, where out_paths(p) is the all
flows from Port p, and 𝑞(𝑖) is i-th link of the flow q.
inhd(p) ::= ⋃ τ ଵି௤(௜ି ଵ)൫𝑞(𝑖)൯∘ ⋯ ∘௤∈𝒊𝒏_𝐩𝐚𝐭𝐡𝐬(௣)τ௤(଴)൫𝑞(1)൯൫𝐢𝐧𝐡𝐝(𝑝)൯, where in_paths(p) is the all
flows to Port p.

F. Performance Estimations of Design 1 and Design 2
We estimated the verification times of these two methods. In
Fig.5 and Fig. 6 in our previous work [4], we estimated
approximate curves of HSA and B-HSA The x-axis of these
curves is the number of the flow entries in the network. The
y-axis is the calculation time of the header spaces of the all
ports in the network.
l B-HSA 𝑏(x) = 3 ∗ 10 ଵି𝑥ଶ+ 0.077𝑥− 13.267 [sec.]
l HSA ℎ(x) = 3 ∗ 10ି଼ 𝑥ଷ− 0.0001𝑥ଶ+ 0.2837𝑥−45.2333 [sec.]

In this estimation, the network is assumed to consist of s
switches, each of which has 24 ports and 500 flow entries.
l In Design 1, it takes 𝑏(500s) [sec] for calculation of all

header spaces. The calculation time of iflow and oflow
are estimated small in comparison with 𝑏(500s). We
approximate the verification time as 𝑏(500s).

l In Design 2, the calculation time of inhd(p) and
outhd(p) is estimated as ℎ(500s)/(24𝑠) [sec] because
the network has 24𝑠 ports and the calculation time of
only one port is estimated ℎ(500s)/(24𝑠).

Fig. 7 shows graphs of the estimated verification times of
Design 1 (B-HSA) and Design 2 (HSA) under the 50 servers
and the 100 servers. The x-axis shows the number of ports
used in a policy to be verified. The y-axis is logarithmic of
the verification times of B-HSA and HSA. The verification
times are not so different when the ports in the policy are a
few, but that of Design 2 is getting rapidly worse when many
ports are verified.

IV. CONCLUSION
In this paper, we proposed a policy language and the

implementation designs of a policy verification tool used in the
network construction time. The policy is estimated to be able
to verify a large network. In future, we will implement the
tool, and evaluate the usefulness and performance of the
proposed methods.

REFERENCES
[1] Peyman Kazemian, George Varghese, and Nick McKeown. “Header

space analysis: static checking for networks”. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation
(NSDI'12). USENIX Association,

[2] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese,
Nick McKeown, and Scott Whyte,. “Real time network policy checking
using header space analysis”. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pages 99-111, 2013.

[3] A. Khurshid, W. Zhou, M. Caesar, P. B. Godfrey, “ VeriFlow:
Verifying Network-Wide Invariants in Real Time,” ACM SIGCOMM
Computer Communication Review, Vol. 42, No. 4, pp. 467-472, Sep.,
2012.

[4] Toshio Tonouchi, Satoshi Yamazaki, Yutaka Yakuwa and Nobuyuki
Tomizawa, “A fast method of verifying network routing with back-trace
header space analysis, IM2015

[5] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A.
Story, and D. Walker, “Frenetic: a network programming language," in
Proceeding of the 16th ACM SIGPLAN international conference on
Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21,
2011 (M. M. T. Chakravarty, Z. Hu, and O. Danvy, eds.), pp. 279{291,
ACM, 2011.

[6] “NOXRepo." http://www.noxrepo.org/.
[7] “About POX | NOXRepo." http://www.noxrepo.org/pox/about-pox/
[8] “Floodlight Project." http://www.projectfloodlight.org/projects/.
[9] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C.

Schlesinger, and D.Walker, “Netkat: Semantic foundations for
networks," in Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL '14, (New
York, NY, USA), pp. 113-126, ACM, 2014.

Fig. 5 Verification time of B-HSA[4]

Fig. 6 Verification time of HSA[4]

Fig. 7 Estimation of verification times

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1 10 100 1000

ve
rif

ic
at

io
n

tim
e(

se
c)

#ports

B-HSA(50 servers)

HSA(50 serverss)

B-HSA(100 servers)

HSA(100 servers)

