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Abstract— Configuration of network is getting complex 

because the network has been equipped with much functionality.  
Meanwhile, the network should satisfy many requirements for 
sophisticated multi-tenancy, high-level security and so on.    For 
example, a flow which should be secure has to go through a 
firewall.  However, it is difficult for an operator to verify whether 
the configuration in large network can satisfy these requirements.  
The verification takes a lot of time and a lot of human work.  In 
addition, the human operator may inherently overlook an 
erroneous configuration.   In this paper, we propose a policy 
language, which can specify the requirements.  We also propose 
two implementation designs of the policy language.  The one of 
the methods is estimated to verify the configuration of larg 
network. 

Keywords—Network Configration, Verification, Header Space 
Analysis, Policy 

I.  INTRODUCTION  
Configuration of network is getting complex because 

network has been equipped with much functionality.  For 
example, in a network having virtual networks behind a 
firewall, the configuration of the firewall and the virtual 
networks should be consistent.  An inconsistent configuration 
may cause the unreachability among the firewall and virtual 
networks. 

Meanwhile, the network should satisfy many requirements 
for sophisticated multi-tenant network, high-level security and 
so on.    For example, flows for a customer should not share the 
same network with the different customers.  A network 
operator has to verify whether the configurations satisfy the 
requirements, but it is difficult for an operator to manually 
verify it.  It takes a lot of time and a lot of human work.  As a 
result, the human operator may inherently overlook an 
erroneous configuration.    

In this paper, we propose a policy language which can 
specify the requirements.  We also propose a verification 
method, which can automatically verify whether the network 
configuration satisfies the requirements given in the policy 
specifications.  The operator can specify requirements in the 
policy specifications.  We also show the design of a 
verification tool, which reads the policy specifications, gets the 
configuration of the network elements, and verifies whether the 
given policy is satisfied in the network.   

The contributions of this paper are follows: 

l We defined a new policy language based on the well-
known first-order predicate logic.   We expect that a 
lot of operators are familiar to the policy language. 

l We show two types of implementation designs of the 
verification tool by using the existing methods [1] [4].  
Through performance estimations, we show the one of 
the methods is suitable for the verification of large 
network. 

II. RELATED WORK 
HSA [1]  models a flow table as so-called a transfer 

function, and calculates the function for a header of flow at a 
switch port.   A packet header consists of a list of attribute-
value pairs.  The value can be a set value. For example, the 
value of Attribute “ipv4_dest” can be “10.20.30.*”.   In short, it 
can handle a bit sequence in which some bits may be wild 
cards.   This header is called a header space. 

In HSA, Transfer function τ௣೔: 𝑃→ 𝐻 is defined for an 
input port 𝑝௜∈ 𝑃. The domain of  τ௣(𝑝′) is whole the header 
space goes from Port 𝑝 to Port 𝑝′  in a switch.  τ௣(𝑝′)൫ℎ௣൯ 
means the header space at Output port 𝑝′ of a flow incoming 
from Port 𝑝 with Header Space ℎ௣. We can also calculate the 
header space of a flow which goes through the several switches.  
For example, in the sequence of the switches in Fig. 1, we can 
calculate Header Space τ௣೙(𝑝௢)  at Port 𝑝௘ from Port 𝑝௜with 
Header Space ℎ௣೔ can be τ௣೙(𝑝௢) = τ௣೙(𝑝௢) ∘ ⋯ ∘ τ௣భ(𝑝ଶ) ∘τ௣೔(𝑝଴)(ℎ௣೔).   

The calculation time of HSA is the cube of flow entries for 
calculating the header spaces for whole switch ports in the 
network [4].   As a result, HSA cannot apply a large scale 
network. 

 
NetPlumber[2] uses HSA and verify the network 

configuration.  It provides a policy language called FlowExp.  
The operator can specify requirements in FlowExp.  
NetPlumber checks, in start-up time and runtime, whether the 
network satisfies the requirement written in FlowExp.   

As mentioned before HSA is not so fast for the runtime 
verification.  NetPlumber uses an incremental checking 
approach in order to make verification time shorter.   Firstly, 
before the runtime verification, it calculates header spaces and 
stores the calculation result into a so-called plumbing graph.  
The plumbing graph has the same topology with the physical 
network to be verified.  NetPlumber uses these calculation 
results in the plumbing graph, and can firstly verify the 

Fig.  1 Architecture of Verification tool 
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network. Secondly, NetPlumber maintains the plumbing graph 
when a flow entry is added / modified / deleted.   This is the 
reason why it is call an incremental checking approach. 

The incremental checking approach is effective after the 
initial calculation has finished, but it is not effective when the 
verification right after the network is constructed.   NetPlumber 
has to make a plumber graph for the newly constructed 
network, and it takes a lot of time. 

B-HSA[4] has less powerful expression power than HSA, 
but it can calculate the header spaces of whole switch ports in 
the network faster than HSA.  HSA calculates the header 
spaces of a flow, while B-HSA calculates the header spaces of 
the whole network at once.  B-HSA can re-use the calculation 
results which were calculated in other flows.  This is the reason 
why B-HSA is faster than HSA.  However, B-HSA cannot 
calculate the header space of each flow.  This is a disadvantage 
of B-HSA. 

B-HSA can be expressed as two functions:  β௜௡: 𝑃→ 𝐻 and β௢௨௧: 𝑃→ 𝐻.  β௜௡(𝑝) represents the union set of whole  header 
spaces at Port 𝑝 of incoming flows.   β௢௨௧(𝑝) represents the 
union set of whole  header spaces at Port 𝑝 of outgoing flows. 

B-HSA does not have a policy language while HSA has a 
NetPlumber with FlowExp.   In this work, we propose the 
designs of the policy language for B-HSA and the verification 
tool.  It can verify network efficiently because B-HSA is used. 

VeriFlow[3]  is a verifier which uses a different calculation 
approach as well as NetPlumber.  This verification tool is the 
proxy of the OpenFlow controller.  It is placed in the control 
link between the controller and each OpenFlow switch.   
VeriFlow monitors OpenFlow packets, and detects an event of 
add / modify / delete of a flow entries.  When it finds the event, 
it, then, verifies the network.  Veriflow verifies the network 
fast, but it can be only used in OpenFlow network.  Most of 
network has legacy network elements.   We should verify the 
whole network including legacy network elements. 

Frenetic [5] is a declarative specification language for 
OpenFlow controller.   It can define the network configuration.  
The operator can compose elements of Frenetic specifications, 
and define the whole network.   The operator can write a 
network configuration with this declarative specifications more 
easily and correctly than the procedure-based controller 
program, such as POX[7] , NOX[6], Flood Light[8] and so on.   

NetKat[9] is a formal specification language for OpenFlow 
controller.   The correctness of the language is mathematically 
proved.   However, it is a different issue that a programming 
language is correctly designed from the configuration of the 
network satisfies the requirements.    

III. POLICY-BASED VERIFICATION TOOL 

A. Approach 
The goal of this work is to verify whether the large-scale 
network satisfies the requirement written in the policy 
language or not.  In order for a fast verification, we use B-
HSA as well as HSA.   The architecture is shown in Fig. 2.  
The inputs are a policy and, flow tables and the topology of 
the network.  Translator translates a policy into a set of 

propositions.   Checker calculates header spaces with B-HSA 
and HSA if necessary, and checks the propositions. 

  
 

B. Examples of Policy 
We give three examples of policy specifications.  
l Example 1. Flow in subnet A should be with 

vlan_id=100.  The network is shown in Fig. 3. 

 
“inhd(p)” means the header space at Port p.  
 
l Example 2. Flows through Subnet A must go through 

the firewall in Fig. 3. 

 
“iflow(p < ports < port(“fw2_2”))”  means that the incoming 
flow at Port p has to go through Port “fw2_2”.  “ports” means 
any path between Port p and Port “fw2_2”. 

 
 
l Example 3. A flow coming from the gateway in Fig. 

4 goes through an SSL-VPN gateway or an IPSec-
VPN gateway. 

 

 
Fig.  2 Architecture of Verification tool 

ports_in_ nw_A  = (port(“p_a1”), port(“p_a2”)); 
forall p in ports_in_ nw_A { 
    inhd(p) ⊂ [vlan_id=100],  

outhd(p) ⊂ [vlan_id=100]; 
} 

forall p in ports_in_ nw_A { 
    iflow(p < ports < port(“fw2_2”)) ; 
} 

 
Fig. 3 Sample Network 

oflow(port(sw4_1) > ports >(sslvpn|IPvpn));  



 

 
C. Syntax of Policy Language 
We give the abstract syntax of the policy language in BNF. 

 
D. Semantic of Policy Language 
We give the semantic of the policy language.  Non-terminal 
symbols from [start] to [prop] represent the first-order logic, 
and, therefore, the semantic is well known and clear.   Non-
terminal symbol of [set_value] represents the set theory, and 
the semantics is also clear.  
We have to show, in this paper, the semantics of [atomicProp] 
and inhd and outhd functions.  
l inhd(p) is the union of header spaces of whole flows 

which go into Port p.  
l outhd(p) is the union of header spaces of whole flows 

which go out of Port p.  
l [exp] in “[exp] ⊂ [exp]” can be [header_val].   “[exp] ⊂ 

[exp]” is, therefore, represented as “[header_val1] ⊂
[header_val2]”.  This holds if and only if each attribute 
value in [header_val1] is a subset of the attribute value of 

[header_val2].   
We consider that “[attr1=v1]” has attribute other than 
“attr1”, whose values are universal sets.   Therefore, 
“[attr1=v1] ⊂ [attr1=v1, attr2=v2]” is true because the 
formula is considered as “[attr1=v1, attr2=any]⊂ [attr1=v1, 
attr2=v2]”. 

l iflow(p1 < p2 < … < p3) holds if and only if the flow 
which reaches Port p1 goes through p3, …, p2, and p1.  
For example it is false if some flow from p1 does not go 
through p2. 

l oflow(p1 > p2 > … > p3) is true if and only if any flow 
from p1 goes through p2, …, and p3.  

l “p1 < ports < p2” and  “p2 > ports > p1” represent any 
flow from p2 to p1. 

E. Implementation Designs of Policy Language 
We show the implementation designs of the policy language. 
Implementation of the part of the first order logic and the part 
of the set theory is clear.  The implementation of “[exp] ⊂ 
[exp]” is also clear.  We do not mention the implementation 
designs of these features in this paper.  
We have to show the implementation designs of inhd, outhd, 
iflow, and oflow.    
l oflow(p0>p1>p2> …>pn>pe), which we call Prop. A, 

holds if only if 𝐝𝐨𝐦ቀτ௣బ(𝑝ଵ)ቁ⊇ 𝐨𝐮𝐭𝐡𝐝(𝑝௢) and 0 <∀i < n. 𝐝𝐨𝐦ቀτ௣೔శభ(𝑝௜ାଶ)ቁ⊇ τ௣೔షభ(𝑝௜) ∘ ⋯ ∘τ௣భ(𝑝ଶ)(𝐨𝐮𝐭𝐡𝐝(𝑝௢)) , which we call Prop. B, holds, 
where 𝑝௘ = 𝑝௡ାଵ and dom(f) is the domain of Function f. 
Ø We firstly prove that Prop. A → Prop. B.  From 

Prop. A, this flow goes through pi+1 and pi+2 for any i.  
Then,  ∀i. 𝐝𝐨𝐦ቀτ௣೔శభ(𝑝௜ାଶ)ቁ⊇ ℎ௣೔శభ  holds.  
Notice that we can calculate Header Space ℎ௣೔ as ℎ௣೔శభ = ℎ௣೔=  τ௣೔షభ(𝑝௜) ∘ ⋯ ∘τ௣భ(𝑝ଶ)(𝐨𝐮𝐭𝐡𝐝(𝑝௢)).  Then Prop. A holds. 

Ø Finally, we show Prop. B → Porp. A.   For any i, the 
flow with Header Space ℎ௣೔= ℎ௣೔శభ goes through 
pi+1 and pi+2 because ∀i. 𝐝𝐨𝐦ቀτ௣೔శభ(𝑝௜ାଶ)ቁ⊇ℎ௣೔శభfrom Prop. B.  Then, the flow with 𝐨𝐮𝐭𝐡𝐝(𝑝௢) 
goes through p0>p1>p2> …>pn>pe.  Then Prop. A 
holds if Prop. B holds. 

l iflow(p0<p1<p2<…<pn<pe) holds if only 0 < ∀i <n. 𝐝𝐨𝐦ቀτ ଵି௣೔శభ(𝑝௜ାଶ)ቁ⊇ τ ଵି௣೔షభ(𝑝௜) ∘ ⋯ ∘τ ଵି௣భ(𝑝ଶ)(𝐢𝐧𝐡𝐝(𝑝௢) .   τ ଵି௣೔శభ(𝑝௜)  is the inverse 
function of  τ௣೔(𝑝௜ାଵ) .  In short, τ ଵି௣೔శభ(𝑝௜) ∘τ௣೔(𝑝௜ାଵ)൫ℎ௣೔൯= ℎ௣೔  and τ௣೔(𝑝௜ାଵ) ∘ τ ଵି௣೔శభ(𝑝௜)൫ℎ௣೔శభ൯= ℎ௣೔శభ.  

l We propose two implementation designs of outhd and 
inhd.   Firstly we implement them as B-HAS functions. 
[Design 1].  In short, outhd(p) ::= β௢௨௧(𝑝)  and 
inhd(p) ::= β௜௡(𝑝).  We calculate the header spaces of all 
ports in the network before the policies are checked. 

 
Fig.  4 Sample NFV Network 

/**** First-order predication  ****/ 
[start] ::=  ([dec] “;” | [pred] “;”)*  ; 
[pred] ::= “forall” [var] “in” [set_value] [pred]“;” 
       | “exists” [var] “in” [hostSet] [pred]  
       | “{“ [pred] “}” | [prop]; 
[prop] ::= [atomicProp]  |  [prop] “,” [prop] | [prop] “|” 

[prop] 
       | “(“ [prop] “)”; 
[dec] ::= [var] “=” [val] “;” 
[val] ::= [direct_value] | [set_value]; 
[direct_value] ::= [header_val] | [port]; 
 
/**** Set  ****/ 
[set_value] ::= [set_value] “&” [set_value] 

 | [set_value] “+” [set_value] 
 | “(“ [port](“,” [port])*  “)” ; 

 
/**** Proposition  ****/ 
[atomicProp] ::= [exp] “⊂” [exp]  

| iflow([flow]) | oflow([flow]) ; 
[exp] ::= [header_val] | [var] ; 
[header_val]  ::= inhd([port]) | outhd([port]) 
       | [header] 
[iflow] ::= [port] (“<” [portexp])*  “<” [port]; 
[oflow] ::= [port] (“>” [portexp] )* “<” [port]; 
[header] ::= “ [“  (attr_name “=” value)* “]” 
[port] ::= [var] | port “(“ str “)” | ports 



l Second one uses HSA transfer function [Design 2].  
outhd(p) ::=  ⋃ τ௤(௜ି ଵ)൫𝑞(𝑖)൯∘ ⋯ ∘௤∈𝒐𝒖𝒕_𝐩𝐚𝐭𝐡𝐬(௣)τ௤(଴)൫𝑞(1)൯൫𝐨𝐮𝐭𝐡𝐝(𝑝)൯, where out_paths(p) is the all 
flows from Port p, and 𝑞(𝑖) is i-th link of the flow q.  
inhd(p) ::=  ⋃ τ ଵି௤(௜ି ଵ)൫𝑞(𝑖)൯∘ ⋯ ∘௤∈𝒊𝒏_𝐩𝐚𝐭𝐡𝐬(௣)τ௤(଴)൫𝑞(1)൯൫𝐢𝐧𝐡𝐝(𝑝)൯, where in_paths(p) is the all 
flows to Port p.    

F. Performance Estimations of Design 1 and Design 2 
We estimated the verification times of these two methods.  In 
Fig.5 and Fig. 6 in our previous work [4], we estimated 
approximate curves of HSA and B-HSA   The x-axis of these 
curves is the number of the flow entries in the network.  The 
y-axis is the calculation time of the header spaces of the all 
ports in the network. 
l B-HSA 𝑏(x) = 3 ∗ 10 ଵି𝑥ଶ+ 0.077𝑥− 13.267 [sec.] 
l HSA ℎ(x) = 3 ∗ 10ି଼ 𝑥ଷ− 0.0001𝑥ଶ+ 0.2837𝑥−45.2333 [sec.] 

 
 

 
In this estimation, the network is assumed to consist of s 
switches, each of which has 24 ports and 500 flow entries.   
l In Design 1, it takes 𝑏(500s) [sec] for calculation of all 

header spaces.   The calculation time of iflow and oflow 
are estimated small in comparison with 𝑏(500s).   We 
approximate the verification time as 𝑏(500s). 

l In Design 2, the calculation time of inhd(p) and 
outhd(p) is estimated as ℎ(500s)/(24𝑠) [sec] because 
the network has 24𝑠 ports and the calculation time of 
only one port is estimated ℎ(500s)/(24𝑠). 

Fig. 7 shows graphs of the estimated verification times of 
Design 1 (B-HSA) and Design 2 (HSA) under the 50 servers 
and the 100 servers.   The x-axis shows the number of ports 
used in a policy to be verified.   The y-axis is logarithmic of 
the verification times of B-HSA and HSA. The verification 
times are not so different when the ports in the policy are a 
few, but that of Design 2 is getting rapidly worse when many 
ports are verified.    

 

IV. CONCLUSION 
In this paper, we proposed a policy language and the 

implementation designs of a policy verification tool used in the 
network construction time.  The policy is estimated to be able 
to verify a large network.   In future, we will implement the 
tool, and evaluate the usefulness and performance of the 
proposed methods. 
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Fig.  5 Verification time of B-HSA[4] 

 
Fig.  6 Verification time of HSA[4] 

 
Fig.  7 Estimation of verification times  
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