
Modified Controlling Queue Delay for TCP Fairness

Improvement

Masato Hanai

Electrical Engineering and

Electronics, Kogakuin University

Graduate School

Tokyo, Japan

cm16036@ns.kogakuin.ac.jp

Saneyasu Yamaguchi

Electrical Engineering and

Electronics, Kogakuin University

Graduate School

Tokyo, Japan
sane@cc.kogakuin.ac.jp

Aki Kobayashi

Electrical Engineering and

Electronics, Kogakuin University

Graduate School

Tokyo, Japan
aki@cc.kogakuin.ac.jp

Abstract—For overcoming performance decline caused by

current long fat networks, many high performance TCPs have

been proposed, such as Compound TCP and CUBIC TCP. These

proposals have raised a new issue, which is fairness among these

modern TCPs. For this issue, several fairness evaluations and

some proposals for improving fairness were published. In our past

work, we focused on Controlling Queue Delay (CoDel) and

proposed a method for improving performance fairness of modern

TCPs by modifying CoDel. However, this existing method

assumed that the most bandwidth-consuming connection was

given for network elements. In this paper, we discuss a method for

improving TCP fairness without such an assumption. First, we

present fairness evaluation among modern TCPs with and without

CoDel, and then demonstrate that fairness among these TCPs is

very poor. Second, we propose a method for improving

performance fairness. The method monitors network packets and

guesses the most bandwidth-consuming connection from the

monitored packets. Then, it drops packets in the most bandwidth-

consuming connections more aggressively in the network element.

Third, we evaluate our proposed method and show that our

method can improve performance fairness.

Keywords—CoDel; TCP fairness; congestion control algorithm

I. INTRODUCTION

TCP Reno [1] is the classical standard TCP congestion
avoidance algorithm. It is still widely used. However, it is
pointed out that enough throughput is not obtained using TCP
Reno over current long fat networks [1][2]. Thus, many TCP
congestion avoidance algorithms, such as BIC TCP [3], CUBIC
TCP [4], and Compound TCP [5] were proposed in order to
remedy this issue. In this paper, we call these algorithms modern
TCPs. These proposals raised a new issue of fairness among
modern TCP algorithms [2][6], which is called TCP Friendly.
Accordingly, some fairness evaluations were executed [7][8],
and these demonstrated that performance fairness among these
TCP algorithms were severe.

For this issue, we proposed a method for improving TCP
fairness[9] based on CoDel, and demonstrated that the method
could improve TCP fairness. However, this method assumed

that the most bandwidth-consuming connection was given for
network elements.

In this paper, we focus on CoDel and discuss a method for
improving TCP fairness without such an assumption. We
evaluate performance fairness among modern TCPs with and
without CoDel, and then demonstrate that the fairness is severely
low. For the issue, we propose a method for improving
performance fairness by modifying CoDel. The proposed
method monitors network packets in network elements and
guesses the most bandwidth-consuming connection from the
packets. It drops packets in the most bandwidth-consuming
connections more aggressively in the network element.

II. RELATED WORK

A. TCP Congestion Avoidance Algorithms

In order to avoid network congestion, TCP implementations
manage congestion window size and controls output speed.
There are many TCP congestion control algorithms. These are
classified into three general groups, loss-based methods, delay-
based methods, and hybrid methods.

Loss-based methods manage congestion window size based
on packet losses. In usual cases, congestion window size is
increased every ACK packet receiving. When a packet loss
occurs, congestion window size is decreased significantly. TCP
Reno [1], BIC TCP [3], and CUBIC TCP [4] are loss-based
methods.

Delay based methods manage congestion window size based
on RTT. These methods decrease congestion windows size
according to RTT increase, which implies increase of network
routers’ load and queue length. While loss-based methods
decrease its congestion window size after congestion, delay-
based methods decrease it before congestion. Thus, obtained
throughput is expected to be stable. However, these methods
have a performance issue. In case of sharing network link with
a loss-based TCP, performance obtained by a delay-based
method is much less than that of a loss-based method, because a
delay-based method decreases its congestion window size

© Copyright IEICE – The 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) 2016

before congestion and a loss-based method does not decrease it
until a packet loss [2]. TCP Vegas [10] is a delay-based method.

Hybrid methods are methods adopting both loss-based
policy and delay-based policy. Compound TCP [5] is a hybrid
method.

B. CUBIC TCP and Compound TCP

CUBIC TCP [4] is an algorithm based on BIC TCP [3], so it
has high scalability similar to BIC TCP. Moreover, it has better
TCP fairness and RTT fairness than BIC TCP. TCP fairness is
performance fairness among TCP algorithms. RTT fairness is
performance fairness among connections with different RTTs,
as described above. CUBIC TCP uses the following cubic
function, while BIC TCP uses binary search.

max

3
)(WKtCcwnd 

 (1)

3
max

C

W
K




 (2)

cwnd is congestion window size, t is time from the last
packet loss, Wmax is congestion window size at the last loss, C

and β are parameters to tune increasing speed in usual state and

dropping ratio at packet losses, respectively. The larger C results

in the faster increase. In most cases, C is 0.4 and β is 0.2.

Compound TCP determines its send window size (swnd)
using both loss-based cwnd and delay-based dwnd. The
algorithm for cwnd is composed of the slow start phase and the
congestion avoidance phase as well as TCP Reno.

C. TCP Fairness

The following works are on improving TCP fairness. Itsumi
et al. proposed a method for improving TCP fairness by
dropping packets[8]. The method monitors queue length in a
router, and a packet is dropped when queue length grows sharply.
Hasegawa et al. proposed a method for dynamic optimizing of
RED parameters in backbone routers [7]. The method optimized
the parameters according to extent of congestion. These works
were based on simulation[11]. Thus, a discussion based on
actual TCP implementations and actual network elements is
required in addition to these works.

D. RED

RED[12] is a queue managing method with which a packet
is dropped according to probability based on average queue
length in a network element. In the case of using Tail Drop, the
all packet in the all connections are dropped in a short period
when queue length reaches buffer length. On the contrary, RED
executes distributed packet losses. It is expected that
performance fairness is improved with RED.

E. Active Packet Dropping

Active Packet Dropping [13] are methods for improving
TCP fairness. There are two types of methods, the static method
and the dynamic method. Both of these methods are based on
RED. These methods preferentially drop packets in bandwidth-
consuming connections.

The static method assumes that the most bandwidth-
consuming connection is given for a router. The router drops

packets in the connection preferentially using the probability in
Fig. 3. The probability is n times greater than the standard RED.
The dynamic method does not assume that the most bandwidth-
consuming connection is given. The router monitors traffic and
estimates the most consuming connection. Then, the router
drops packets in the estimated connection using probability in
Fig. 3.

The evaluation with an actual TCP implementation and an
actual network elements in [13] demonstrates that both of the
methods can improve TCP fairness. Especially, the static

D
ro

p
p

in
g

P
ro

b
ab

ili
ty

Average
Queue Lenght

1

maxp

minth maxth

S
lo

w
 S

ta
rt

cwnd

time

Wmax

1

maxp

minth maxth

Dropping pribability
of usual connection

Dropping probability of
the most bandwidth-consuming

connection

×n

D
ro

p
p

in
g

P
ro

b
ab

ili
ty

Average
Queue Lenght

Fig. 1 Transition of congestion window size

of CUBIC TCP

Fig. 2 Relation between average queue length and packet

dropping probability on RED

Fig. 3. Active Packet Dropping

method with the suitable setting can significantly improve the
fairness. However, it is also demonstrated that the total
performance is declined with these methods, because these
methods actively drops packet.

F. Bufferbloat

Current network routes have huge size of buffers and these
buffers are always full of packets. As a result, every packet has
to experience long queuing delay (the time spent waiting to be
processed or transmitted). At the congestion control in TCP,
buffer size is desired to exceed BDP (bandwidth-delay product),
where bandwidth is the bottleneck link and delay is the RTT
(round-trip time) between sender and destination. Therefore, this
may decline performance. This issue is called Bufferbloat [14].
For this issue, CoDel was proposed[15]. It will be described in
the next subsection.

G. CoDel

Nichols et al. proposed a new packet queue scheduling
algorithm, called CoDel[15]. This drops packets when queue
delay time, time length between time at enqueue and dequeue of
a packet, exceeds the threshold time, which is called target. The
threshold is 5 ms with the default setup.

Unlike RED, CoDel has only one parameter, i.e. target, and
dropping is determined only with queueing delay time. Because
of this ease of use, this is expected to become popular. We think
that CoDel can improve TCP fairness, like RED, by controlling
a queue, and discussion on improving fairness with CoDel is
important.

H. Static Fairnss Improving Method

A method for improving performance fairness of modern
TCPs by modifying CoDel was proposed [9]. CoDel always

drops packet when queue delay time exceeds the target. We
proposed to introduce dropping provability p for the connections
except for the most bandwidth-consuming connection. For the
most bandwidth-consuming connection, a packet that exceeds
the target was always dropped. For the other connections, an
exceeding packet was dropped with probability p.

III. TCP FAIRNESS EVALUATION

In this section, we evaluated the performance fairness
between TCP algorithms with TailDrop and with CoDel.

We have performed iperf [16] using CUBIC TCP and
Compound TCP over the network shown in Fig. 4. PC CoDel
and PC Delay are network switches. PC CoDel manages the
queue using CoDel if it is enabled. PC Delay emulates network
delay using Netem. The specifications of PC Linux 1, PC Linux
2, and PC Windows are shown in TABLE I. Those of PC CoDel
and PC Delay are shown in TABLE II. All of these elements
support 1 Gigabit Ethernet. 10 connections are established for
each TCP algorithm, i.e. total 20 connections, simultaneously.

The experimental results are depicted in Fig. 5 and Fig. 6.
The horizontal axes show the two way network delay time
emulated in PC Delay. The vertical axis in FIg. 5 shows the
average throughput of 10 connections of each TCP algorithm.
This figure demonstrates that fairness without CoDel is severe.
Linux with CUBIC TCP remarkably outperforms Windows with
Compound TCP. Especially, the fairness with 64 ms of emulated

TABLE I. SPECIFICATION OF COMPUTERS (1)

CPU AMD Turion, 2.20[GHz]

Memory 4[GB]

OS

(Linux1) Linux 4.2.3

(Linux2) Linux 3.3.4

(Windows) Windows7 Enterprise

TABLE II. SPECIFICATION OF COMPUTERS (2)

CPU Intel CelronG540, 2.4[GHz]

Memory 2[GB]

OS (Codel，Delay) Linux 3.17.4

10

20

30

40

50

60

70

80

1 10
A

ve
ra

ge
 T

h
ro

u
gh

p
u

t
[M

b
p

s]

Additional Delay [ms]

Linux(TailDrop) Linux(CoDel)

Windows(TailDrop) Windows(CoDel)

0

20

40

60

80

100

1 10

R
T

T
 [

m
s]

Additional Delay [ms]

RTT(Taildrop) RTT(CoDel)

Fig. 4. Experimental Network

Fig. 5. Experimental results(Average Throughput)

Fig. 6. Experimental results (RTT)

network delay is poor. We can see also that utilizing CoDel
improves TCP fairness in some cases. However, the fairness
with large network delay, such as 64 ms, is still severe. Fig. 6
shows CoDel effectively reduces communication RTT without
decline of throughput performance.

IV. PPOPOSED METHOD

A. Improving CoDel

In this section, we propose a method for improving TCP

fairness without an assumption that the most bandwidth-

consuming connection is given for network elements.

The most bandwidth-consuming connection is estimated as

follows, see Fig. 7. The most consuming connection is defined

as the connection that sends the most packets to the network

element. The network element records the connection

information of a packet every rec_int packets receiving, which

is recording interval. The element stores the latest hist_len

records, which is history length. Then, the most frequently

stored connection in the log is extracted every stat_int packets

receiving, which is statistical interval. The determined

connection is assumed as the most bandwidth-consuming

connection.

Packets in the estimated most consuming connection are

dropped more actively according to the static method in II.H

than those in the other connections. That is, a packet in the most

bandwidth-consuming connection that exceeds the target is

always dropped. An exceeding packet in the other connections

is dropped with dropping probability p. p is a tuning parameter.

Fig. 8 illustrates the behavior of the proposed method.

B. Implementation

We have implemented the proposed method by modifying
the implementation of CoDel in Linux. Devices are identified
using MAC addresses. Connection information is composed of
MAC addresses of the sender and the receiver. Packet dropping
with probability p should be executed using random number, but
our implementation periodically drops a packet once per 1/p
packets using a loop counter for simplyfying.

V. EVALUATION

In this section, we evaluate our method. We measured
performance using iperf on the network in Fig. 4 with 1, 4, 8,
16, and 64 ms emulated network delay. The relation between
network delay time and fairness is shown in Fig. 9. The
horizontal axis is added network delay. The vertical axis is
Jain’s Fairness Index[17]. Fig. 10 depicts the total throughput
of all the methods. Fig. 11 shows the average throughput of
each operating system. Fig. 12 shows the relation between the
dropping probability and Fairness Index. In these figures,
“Static” and “Dynamic” mean the existing static method and
the proposed dynamic method, respectively. We used the
dropping probability p = 1/3 for Fig. 9 to Fig. 11 because the
work [9] showed that the probability provided the best
fairness.

Fig. 9, 10, and 11 indicate that the proposed method can
improve TCP fairness remarkably. The static method can
improve the fairness with 64 ms delay, but cannot improve
with other delay times. This indicates that static the method

Fig. 7. proposed method (decision of drop)

ABCDE enqueue

EFGH dequeue

Timestamp_enq

Timestamp_deq

target < timestamp_deq – timestamp_enq?

most bandwidth-consuming?

drop
normal process

(not drop)

Random

Yes (p)

No (1-p)

Yes

Yes

No

No

Yes

No

Packet Dequeue

DEF dequeueK enqueue

ADGJ

GHIJ

records packet information
every three packets

if rec_int = 3

finds the most
frequent connection

every stat_int packets
log size is hist_len

Fig. 8. proposed method (decision of the most bandwidth-consuming)

can control fairness, but cannot always provide efficient
fairness without suitable tuning. On the other hand, the
proposed dynamic method can provide good fairness
independent of delay time. From Fig. 12, we can see that the
best fairness is achieved with p = 1/3. In addition, we can see
also that almost the best fairness is obtained with small p.
Thus, we can say that the proposed method can provide
almost the best fairness using small p without detailed tuning.

VI. CONCLUSION

In this paper, we have proposed a method for improving TCP
fairness based on CoDel without an assumption that the most
bandwidth-consuming connection is given. Our evaluation has
demonstrated that the proposed method have been able to
improve TCP fairness among modern TCP algorithms without
large performance decline.

For future work, we plan to discuss a method for improving
fairness without introducing a new parameter.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Numbers 24300034, 25280022, 26730040, 15H02696.

This work was supported by CREST, JST.

REFERENCES

[1] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proceedings of ACM SIG-
COMM 2002, Aug. 2002.

[2] Jeonghoon Mo, Richard J. La, VenkatAnantharam, and Jean Walrand,
“Analysis and comparison of TCP Reno and Vegas”, in Proceedings of
IEEE INFOCOM’99, March 1999.

[3] L. Xu, K. Harfoush and I. Rhee, “Binary Increase Congestion Control for
Fast Long-Distance Networks,” Proc. IEEE Info COM 2004, March 2004

[4] Injong Rhee and Lisong Xu “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” Proc. Workshop on Protocols for Fast Long Distance
Networks, 2005, 2005.

[5] Kun Tan, Jingmin Song, Qian Zhang, and Murari Sridharan, “A
Compound TCP Approach for High-speed and Long Distance Networks,”
Proc. of IEEE Info COM 2005, July 2005.

[6] Ryo Oura, Saneyasu Yamaguchi, “Fairness Comparisons Among Modern
TCP Implementations,” The 6th International Workshop on
Telecommunication Networking, Applications and Systems (TeNAS
2012), Mar. 2012.

[7] Hasegawa G, Itaya Natsuki , Murata Masayuki, “The dynamic threthold
control algorithm of RED for thousands of TCP flows,” IEICE Technical
Report , NS2001-11, 2001 (in Japanese)

[8] ITSUMI Hayato, YAMAMOTO Miki, “Improving Fairness between
CUBIC and Compound TCP,” IEICE Technical Report, vol. 110, no.
372, NS2010-160，pp. 103-108, 2010 (in Japanese)

[9] Masato Hanai, Saneyasu Yamaguchi, and Aki Kobayashi, "Improving
TCP Fairness Between Modern TCP Algorithms Based on Controlling
Delay," Workshop of 2016 IEEE 17th International Conference on High
Performance Switching and Routing, Jun. 2016.

[10] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet”, IEEE Journal on Selected Areas in
Communication, Vol.13, No.8, pp.1465-1480, October 1995.

[11] Network Simulator-ns-2, http://www.isi.edu/nsnam/ns/

[12] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
pp. 397.413, Aug. 1993.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1 0 1 0 0

Fa
ir

n
e

ss
In

d
e

x

Additional Delay [ms]

TailDrop CoDel Static Dynamic

0

10

20

30

40

50

60

70

80

90

100

1 10 100

A
v

e
ra

g
e

 T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Additional Delay [ms]

TailDrop CoDel Static Dynamic

0

10

20

30

40

50

60

70

80

90

1 1 0 1 0 0

A
v

e
ra

g
e

 T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Additional Delay [ms]

Linux(TailDrop) Linux(CoDel) Linux(Static) Linux(Proposal)

Windows(TailDrop) Windows(CoDel) Windows(Static) Windows(Proposal)

Fig. 9. Experimental results (Fairness Index)

Fig. 10. Experimental results (Total throughput)

Fig. 11. Experimental results (Throughput of each OS)

[13] Yuria Akiyama, Tomoki Kozu, Saneyasu Yamaguchi, "Active packet
dropping for improving performance fairness among modern TCPs," The
16th Asia-Pacific Network Operations and Management Symposium
(APNOMS 2014), 2014

[14] J. Gettys, "Bufferbloat: Dark Buffers in the Internet," in IEEE Internet
Computing, vol. 15, no. 3, pp. 96-96, May-June 2011.

[15] Kathleen Nichols and Van Jacobson. 2012. Controlling queue
delay.Commun. ACM 55, 7 (July 2012), 42-50.

[16] iperf homepage, https://iperf.fr/

[17] R. Jain, D. Chiu and W. Hawe, "A quantitative measure of fairness
and discrimination for resource allocation in shared systems",
DEC-TR-301, Tech. Rep., 1984

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Fa
ir

n
e

ss
In

d
e

x

Dropping Probability [%]

Static Dynamic

Fig. 12. Experimental results (Dropping probability and Fairnes Index)

