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Abstract—For overcoming performance decline caused by 

current long fat networks, many high performance TCPs have 

been proposed, such as Compound TCP and CUBIC TCP. These 

proposals have raised a new issue, which is fairness among these 

modern TCPs. For this issue, several fairness evaluations and 

some proposals for improving fairness were published. In our past 

work, we focused on Controlling Queue Delay (CoDel) and 

proposed a method for improving performance fairness of modern 

TCPs by modifying CoDel. However, this existing method 

assumed that the most bandwidth-consuming connection was 

given for network elements. In this paper, we discuss a method for 

improving TCP fairness without such an assumption. First, we 

present fairness evaluation among modern TCPs with and without 

CoDel, and then demonstrate that fairness among these TCPs is 

very poor. Second, we propose a method for improving 

performance fairness. The method monitors network packets and 

guesses the most bandwidth-consuming connection from the 

monitored packets. Then, it drops packets in the most bandwidth-

consuming connections more aggressively in the network element. 

Third, we evaluate our proposed method and show that our 

method can improve performance fairness. 
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I.  INTRODUCTION 

TCP Reno [1] is the classical standard TCP congestion 
avoidance algorithm. It is still widely used. However, it is 
pointed out that enough throughput is not obtained using TCP 
Reno over current long fat networks [1][2]. Thus, many TCP 
congestion avoidance algorithms, such as BIC TCP [3], CUBIC 
TCP [4], and Compound TCP [5] were proposed in order to 
remedy this issue. In this paper, we call these algorithms modern 
TCPs. These proposals raised a new issue of fairness among 
modern TCP algorithms [2][6], which is called TCP Friendly. 
Accordingly, some fairness evaluations were executed [7][8], 
and these demonstrated that performance fairness among these 
TCP algorithms were severe.  

For this issue, we proposed a method for improving TCP 
fairness[9] based on CoDel, and demonstrated that the method 
could improve TCP fairness. However, this method assumed 

that the most bandwidth-consuming connection was given for 
network elements. 

In this paper, we focus on CoDel and discuss a method for 
improving TCP fairness without such an assumption. We 
evaluate performance fairness among modern TCPs with and 
without CoDel, and then demonstrate that the fairness is severely 
low. For the issue, we propose a method for improving 
performance fairness by modifying CoDel. The proposed 
method monitors network packets in network elements and 
guesses the most bandwidth-consuming connection from the 
packets. It drops packets in the most bandwidth-consuming 
connections more aggressively in the network element. 

II. RELATED WORK 

A. TCP Congestion Avoidance Algorithms 

In order to avoid network congestion, TCP implementations 
manage congestion window size and controls output speed. 
There are many TCP congestion control algorithms. These are 
classified into three general groups, loss-based methods, delay-
based methods, and hybrid methods.  

Loss-based methods manage congestion window size based 
on packet losses. In usual cases, congestion window size is 
increased every ACK packet receiving. When a packet loss 
occurs, congestion window size is decreased significantly. TCP 
Reno [1], BIC TCP [3], and CUBIC TCP [4] are loss-based 
methods.  

Delay based methods manage congestion window size based 
on RTT. These methods decrease congestion windows size 
according to RTT increase, which implies increase of network 
routers’ load and queue length. While loss-based methods 
decrease its congestion window size after congestion, delay-
based methods decrease it before congestion. Thus, obtained 
throughput is expected to be stable. However, these methods 
have a performance issue. In case of sharing network link with 
a loss-based TCP, performance obtained by a delay-based 
method is much less than that of a loss-based method, because a 
delay-based method decreases its congestion window size 
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before congestion and a loss-based method does not decrease it 
until a packet loss [2]. TCP Vegas [10] is a delay-based method.  

Hybrid methods are methods adopting both loss-based 
policy and delay-based policy. Compound TCP [5] is a hybrid 
method.  

B. CUBIC TCP and Compound TCP 

CUBIC TCP [4] is an algorithm based on BIC TCP [3], so it 
has high scalability similar to BIC TCP. Moreover, it has better 
TCP fairness and RTT fairness than BIC TCP. TCP fairness is 
performance fairness among TCP algorithms. RTT fairness is 
performance fairness among connections with different RTTs, 
as described above. CUBIC TCP uses the following cubic 
function, while BIC TCP uses binary search. 
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cwnd is congestion window size, t is time from the last 
packet loss, Wmax is congestion window size at the last loss, C 

and β are parameters to tune increasing speed in usual state and 

dropping ratio at packet losses, respectively. The larger C results 

in the faster increase. In most cases, C is 0.4 and β is 0.2.  

Compound TCP determines its send window size (swnd) 
using both loss-based cwnd and delay-based dwnd. The 
algorithm for cwnd is composed of the slow start phase and the 
congestion avoidance phase as well as TCP Reno.  

C. TCP Fairness 

The following works are on improving TCP fairness. Itsumi 
et al. proposed a method for improving TCP fairness by 
dropping packets[8]. The method monitors queue length in a 
router, and a packet is dropped when queue length grows sharply. 
Hasegawa et al. proposed a method for dynamic optimizing of 
RED parameters in backbone routers [7]. The method optimized 
the parameters according to extent of congestion. These works 
were based on simulation[11]. Thus, a discussion based on 
actual TCP implementations and actual network elements is 
required in addition to these works.  

D. RED 

RED[12] is a queue managing method with which a packet 
is dropped according to probability based on average queue 
length in a network element. In the case of using Tail Drop, the 
all packet in the all connections are dropped in a short period 
when queue length reaches buffer length. On the contrary, RED 
executes distributed packet losses. It is expected that 
performance fairness is improved with RED.  

E. Active Packet Dropping 

Active Packet Dropping [13] are methods for improving 
TCP fairness. There are two types of methods, the static method 
and the dynamic method. Both of these methods are based on 
RED. These methods preferentially drop packets in bandwidth-
consuming connections.  

The static method assumes that the most bandwidth-
consuming connection is given for a router. The router drops 

packets in the connection preferentially using the probability in 
Fig. 3. The probability is n times greater than the standard RED. 
The dynamic method does not assume that the most bandwidth-
consuming connection is given. The router monitors traffic and 
estimates the most consuming connection. Then, the router 
drops packets in the estimated connection using probability in 
Fig. 3.  

The evaluation with an actual TCP implementation and an 
actual network elements in [13] demonstrates that both of the 
methods can improve TCP fairness. Especially, the static 

D
ro

p
p

in
g

P
ro

b
ab

ili
ty

Average
Queue Lenght

1

maxp

minth maxth

S
lo

w
 S

ta
rt

cwnd

time

Wmax

1

maxp

minth maxth

Dropping pribability
of usual connection

Dropping probability of
the most bandwidth-consuming

connection

×n

D
ro

p
p

in
g

P
ro

b
ab

ili
ty

Average
Queue Lenght

Fig. 1  Transition of congestion window size 

of CUBIC TCP 

Fig. 2  Relation between average queue length and packet 

dropping probability on RED 

Fig. 3.  Active Packet Dropping 

 



method with the suitable setting can significantly improve the 
fairness. However, it is also demonstrated that the total 
performance is declined with these methods, because these 
methods actively drops packet.  

F. Bufferbloat 

Current network routes have huge size of buffers and these 
buffers are always full of packets. As a result, every packet has 
to experience long queuing delay (the time spent waiting to be 
processed or transmitted). At the congestion control in TCP, 
buffer size is desired to exceed BDP (bandwidth-delay product), 
where bandwidth is the bottleneck link and delay is the RTT 
(round-trip time) between sender and destination. Therefore, this 
may decline performance. This issue is called Bufferbloat [14]. 
For this issue, CoDel was proposed[15]. It will be described in 
the next subsection.  

G. CoDel 

Nichols et al. proposed a new packet queue scheduling 
algorithm, called CoDel[15]. This drops packets when queue 
delay time, time length between time at enqueue and dequeue of 
a packet, exceeds the threshold time, which is called target. The 
threshold is 5 ms with the default setup.  

Unlike RED, CoDel has only one parameter, i.e. target, and 
dropping is determined only with queueing delay time. Because 
of this ease of use, this is expected to become popular. We think 
that CoDel can improve TCP fairness, like RED, by controlling 
a queue, and discussion on improving fairness with CoDel is 
important.  

H. Static Fairnss Improving Method 

A method for improving performance fairness of modern 
TCPs by modifying CoDel was proposed [9]. CoDel always 

drops packet when queue delay time exceeds the target. We 
proposed to introduce dropping provability p for the connections 
except for the most bandwidth-consuming connection. For the 
most bandwidth-consuming connection, a packet that exceeds 
the target was always dropped. For the other connections, an 
exceeding packet was dropped with probability p.  

III. TCP FAIRNESS EVALUATION 

In this section, we evaluated the performance fairness 
between TCP algorithms with TailDrop and with CoDel.  

We have performed iperf [16] using CUBIC TCP and 
Compound TCP over the network shown in Fig. 4. PC CoDel 
and PC Delay are network switches. PC CoDel manages the 
queue using CoDel if it is enabled. PC Delay emulates network 
delay using Netem. The specifications of PC Linux 1, PC Linux 
2, and PC Windows are shown in TABLE I. Those of PC CoDel 
and PC Delay are shown in TABLE II. All of these elements 
support 1 Gigabit Ethernet. 10 connections are established for 
each TCP algorithm, i.e. total 20 connections, simultaneously.  

The experimental results are depicted in Fig. 5 and Fig. 6. 
The horizontal axes show the two way network delay time 
emulated in PC Delay. The vertical axis in FIg. 5 shows the 
average throughput of 10 connections of each TCP algorithm. 
This figure demonstrates that fairness without CoDel is severe. 
Linux with CUBIC TCP remarkably outperforms Windows with 
Compound TCP. Especially, the fairness with 64 ms of emulated 

TABLE I.  SPECIFICATION OF COMPUTERS (1) 

CPU AMD Turion, 2.20[GHz] 

Memory 4[GB] 

OS 

(Linux1) Linux 4.2.3  

(Linux2) Linux 3.3.4  

(Windows) Windows7 Enterprise 
 

TABLE II.  SPECIFICATION OF COMPUTERS (2) 

CPU Intel CelronG540, 2.4[GHz] 

Memory 2[GB] 

OS (Codel，Delay) Linux 3.17.4 

 

10

20

30

40

50

60

70

80

1 10
A

ve
ra

ge
 T

h
ro

u
gh

p
u

t 
[M

b
p

s]

Additional Delay [ms]

Linux(TailDrop) Linux(CoDel)

Windows(TailDrop) Windows(CoDel)

0

20

40

60

80

100

1 10

R
T

T
 [

m
s]

Additional Delay [ms]

RTT(Taildrop) RTT(CoDel)

Fig. 4. Experimental Network 

 

Fig. 5. Experimental results(Average Throughput) 

 

Fig. 6. Experimental results (RTT) 

 



network delay is poor. We can see also that utilizing CoDel 
improves TCP fairness in some cases. However, the fairness 
with large network delay, such as 64 ms, is still severe. Fig. 6 
shows CoDel effectively reduces communication RTT without 
decline of throughput performance. 

IV. PPOPOSED METHOD 

A. Improving CoDel 

In this section, we propose a method for improving TCP 

fairness without an assumption that the most bandwidth-

consuming connection is given for network elements. 

The most bandwidth-consuming connection is estimated as 

follows, see Fig. 7. The most consuming connection is defined 

as the connection that sends the most packets to the network 

element. The network element records the connection 

information of a packet every rec_int packets receiving, which 

is recording interval. The element stores the latest hist_len 

records, which is history length. Then, the most frequently 

stored connection in the log is extracted every stat_int packets 

receiving, which is statistical interval. The determined 

connection is assumed as the most bandwidth-consuming 

connection.  

Packets in the estimated most consuming connection are 

dropped more actively according to the static method in II.H 

than those in the other connections. That is, a packet in the most 

bandwidth-consuming connection that exceeds the target is 

always dropped. An exceeding packet in the other connections 

is dropped with dropping probability p. p is a tuning parameter. 

Fig. 8 illustrates the behavior of the proposed method. 

B. Implementation 

We have implemented the proposed method by modifying 
the implementation of CoDel in Linux. Devices are identified 
using MAC addresses. Connection information is composed of 
MAC addresses of the sender and the receiver. Packet dropping 
with probability p should be executed using random number, but 
our implementation periodically drops a packet once per 1/p 
packets using a loop counter for simplyfying.  

V. EVALUATION 

In this section, we evaluate our method. We measured 
performance using iperf on the network in Fig. 4 with 1, 4, 8, 
16, and 64 ms emulated network delay. The relation between 
network delay time and fairness is shown in Fig. 9. The 
horizontal axis is added network delay. The vertical axis is 
Jain’s Fairness Index[17]. Fig. 10 depicts the total throughput 
of all the methods. Fig. 11 shows the average throughput of 
each operating system. Fig. 12 shows the relation between the 
dropping probability and Fairness Index. In these figures, 
“Static” and “Dynamic” mean the existing static method and 
the proposed dynamic method, respectively. We used the 
dropping probability p = 1/3 for Fig. 9 to Fig. 11 because the 
work [9] showed that the probability provided the best 
fairness.  

Fig. 9, 10, and 11 indicate that the proposed method can 
improve TCP fairness remarkably. The static method can 
improve the fairness with 64 ms delay, but cannot improve 
with other delay times. This indicates that static the method  

  

Fig. 7.  proposed method (decision of drop) 
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can control fairness, but cannot always provide efficient 
fairness without suitable tuning. On the other hand, the 
proposed dynamic method can provide good fairness 
independent of delay time. From Fig. 12, we can see that the 
best fairness is achieved with p = 1/3. In addition, we can see 
also that almost the best fairness is obtained with small p. 
Thus, we can say that the proposed method can provide 
almost the best fairness using small p without detailed tuning.  

VI. CONCLUSION 

In this paper, we have proposed a method for improving TCP 
fairness based on CoDel without an assumption that the most 
bandwidth-consuming connection is given. Our evaluation has 
demonstrated that the proposed method have been able to 
improve TCP fairness among modern TCP algorithms without 
large performance decline.  

For future work, we plan to discuss a method for improving 
fairness without introducing a new parameter.  
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